These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15063589)

  • 1. Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption.
    Taïeb N; Yahi N; Fantini J
    Adv Drug Deliv Rev; 2004 Apr; 56(6):779-94. PubMed ID: 15063589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane rafts: a potential gateway for bacterial entry into host cells.
    Hartlova A; Cerveny L; Hubalek M; Krocova Z; Stulik J
    Microbiol Immunol; 2010 Apr; 54(4):237-45. PubMed ID: 20377752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Internalization of Pseudomonas aeruginosa is mediated by lipid rafts in contact lens-wearing rabbit and cultured human corneal epithelial cells.
    Yamamoto N; Yamamoto N; Petroll MW; Cavanagh HD; Jester JV
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1348-55. PubMed ID: 15790901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid raft heterogeneity: an enigma.
    Mishra S; Joshi PG
    J Neurochem; 2007 Nov; 103 Suppl 1():135-42. PubMed ID: 17986148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free antibody capture method for analysis of detergent-resistant membrane rafts.
    Bamezai A; Kennedy C
    Methods Mol Biol; 2008; 477():137-47. PubMed ID: 19082945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial invasion via lipid rafts.
    Lafont F; van der Goot FG
    Cell Microbiol; 2005 May; 7(5):613-20. PubMed ID: 15839890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogens: raft hijackers.
    Mañes S; del Real G; Martínez-A C
    Nat Rev Immunol; 2003 Jul; 3(7):557-68. PubMed ID: 12876558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells.
    Yanagisawa M; Nakamura K; Taga T
    Genes Cells; 2004 Sep; 9(9):801-9. PubMed ID: 15330857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid microdomains and k(+) channel compartmentation: detergent and non-detergent-based methods for the isolation and characterisation of cholesterol-enriched lipid rafts.
    Sampson LJ; Dart C
    Methods Mol Biol; 2008; 491():91-101. PubMed ID: 18998086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains.
    Patel HH; Murray F; Insel PA
    Handb Exp Pharmacol; 2008; (186):167-84. PubMed ID: 18491052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. P-Glycoprotein is localized in intermediate-density membrane microdomains distinct from classical lipid rafts and caveolar domains.
    Radeva G; Perabo J; Sharom FJ
    FEBS J; 2005 Oct; 272(19):4924-37. PubMed ID: 16176266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.
    Fantini J; Garmy N; Yahi N
    Biochemistry; 2006 Sep; 45(36):10957-62. PubMed ID: 16953581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts.
    Kiyan J; Smith G; Haller H; Dumler I
    Biochem J; 2009 Oct; 423(3):343-51. PubMed ID: 19691446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GSL-enriched membrane microdomains in innate immune responses.
    Nakayama H; Ogawa H; Takamori K; Iwabuchi K
    Arch Immunol Ther Exp (Warsz); 2013 Jun; 61(3):217-28. PubMed ID: 23456206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: activation of signal transduction pathways and perturbations of intestinal absorption and secretion.
    Fantini J; Maresca M; Hammache D; Yahi N; Delézay O
    Glycoconj J; 2000; 17(3 -4):173-9. PubMed ID: 11201788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial subversion of lipid rafts.
    Lafont F; Abrami L; van der Goot FG
    Curr Opin Microbiol; 2004 Feb; 7(1):4-10. PubMed ID: 15036133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of lipid rafts in T cells.
    Thomas S; Preda-Pais A; Casares S; Brumeanu TD
    Mol Immunol; 2004 Jun; 41(4):399-409. PubMed ID: 15163537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsalpha in rafts is essential for signal transduction.
    Kamata K; Manno S; Ozaki M; Takakuwa Y
    Am J Hematol; 2008 May; 83(5):371-5. PubMed ID: 18181202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions.
    Iwabuchi K
    Methods Mol Biol; 2018; 1804():83-95. PubMed ID: 29926405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.