These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 15063701)

  • 1. Evaluation of oxygen response involving differential gene expression in Chlamydomonas reinhardtii.
    Del Campo JA; Quinn JM; Merchant S
    Methods Enzymol; 2004; 381():604-17. PubMed ID: 15063701
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of copper exposure on gene expression profiles in Chlamydomonas reinhardtii based on microarray analysis.
    Jamers A; Van der Ven K; Moens L; Robbens J; Potters G; Guisez Y; Blust R; De Coen W
    Aquat Toxicol; 2006 Dec; 80(3):249-60. PubMed ID: 17079029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures.
    Laurinavichene TV; Kosourov SN; Ghirardi ML; Seibert M; Tsygankov AA
    J Biotechnol; 2008 Apr; 134(3-4):275-7. PubMed ID: 18294717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of singlet oxygen in chloroplast to nucleus retrograde signaling in Chlamydomonas reinhardtii.
    Fischer BB; Krieger-Liszkay A; Hideg E; Snyrychová I; Wiesendanger M; Eggen RI
    FEBS Lett; 2007 Dec; 581(29):5555-60. PubMed ID: 17997989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production by photoautotrophic sulfur-deprived Chlamydomonas reinhardtii pre-grown and incubated under high light.
    Tolstygina IV; Antal TK; Kosourov SN; Krendeleva TE; Rubin AB; Tsygankov AA
    Biotechnol Bioeng; 2009 Mar; 102(4):1055-61. PubMed ID: 18985615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel analysis of transcript levels and physiological key parameters allows the identification of stress phase gene markers in Chlamydomonas reinhardtii under copper excess.
    Luis P; Behnke K; Toepel J; Wilhelm C
    Plant Cell Environ; 2006 Nov; 29(11):2043-54. PubMed ID: 17081240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.
    Kosourov S; Patrusheva E; Ghirardi ML; Seibert M; Tsygankov A
    J Biotechnol; 2007 Mar; 128(4):776-87. PubMed ID: 17275940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum.
    Wu S; Li X; Yu J; Wang Q
    Bioresour Technol; 2012 Nov; 123():184-8. PubMed ID: 22940317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Photochemical activity of photosystem II and hydrogen photoproduction in sulfur-deprived Chlamydomonas reinhardtii mutants D1-R323D and D1-R323L].
    Makarova VV; Kosourov SN; Krendeleva TE; Kukarskikh GP; Ghirardi ML; Seibert M; Rubin AB
    Biofizika; 2005; 50(6):1070-8. PubMed ID: 16358786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harvesting microalgae cultures with superabsorbent polymers: desulfurization of Chlamydomonas reinhardtii for hydrogen production.
    Martín del Campo JS; Patiño R
    Biotechnol Bioeng; 2013 Dec; 110(12):3227-34. PubMed ID: 23797775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell.
    Rosenbaum M; Schröder U; Scholz F
    Appl Microbiol Biotechnol; 2005 Oct; 68(6):753-6. PubMed ID: 15696280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient H2 production via Chlamydomonas reinhardtii.
    Esquível MG; Amaro HM; Pinto TS; Fevereiro PS; Malcata FX
    Trends Biotechnol; 2011 Dec; 29(12):595-600. PubMed ID: 21794941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and optimization of photosynthetic hydrogen gas production by green alga Chlamydomonas reinhardtii in sulfur-deprived circumstance.
    Jo JH; Lee DS; Park JM
    Biotechnol Prog; 2006; 22(2):431-7. PubMed ID: 16599558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NIT1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii.
    Koblenz B; Lechtreck KF
    Eukaryot Cell; 2005 Nov; 4(11):1959-62. PubMed ID: 16278463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous hydrogen photoproduction by Chlamydomonas reinhardtii: using a novel two-stage, sulfate-limited chemostat system.
    Fedorov AS; Kosourov S; Ghirardi ML; Seibert M
    Appl Biochem Biotechnol; 2005; 121-124():403-12. PubMed ID: 15917617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling fungal contamination in Chlamydomonas reinhardtii cultures.
    Mahan KM; Odom OW; Herrin DL
    Biotechniques; 2005 Oct; 39(4):457-8. PubMed ID: 16235554
    [No Abstract]   [Full Text] [Related]  

  • 17. The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii.
    Hemschemeier A; Happe T
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):39-41. PubMed ID: 15667259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Chlamydomonas strains that efficiently express nuclear transgenes.
    Neupert J; Karcher D; Bock R
    Plant J; 2009 Mar; 57(6):1140-50. PubMed ID: 19036032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanism of CO2-responsive transcriptional regulation in photosynthetic organisms: carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii].
    Fukuzawa H; Yamano T
    Tanpakushitsu Kakusan Koso; 2005 Jul; 50(8):958-65. PubMed ID: 16001801
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation and localization of isoforms of the aerobic oxidative cyclase in Chlamydomonas reinhardtii.
    Allen MD; Kropat J; Merchant SS
    Photochem Photobiol; 2008; 84(6):1336-42. PubMed ID: 19067954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.