These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 15063791)
1. Implications of the role of reactive cystein in arginine kinase: reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified arginine kinase reactivated by dithiothreitol. Pan JC; Cheng Y; Hui EF; Zhou HM Biochem Biophys Res Commun; 2004 Apr; 317(2):539-44. PubMed ID: 15063791 [TBL] [Abstract][Full Text] [Related]
2. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid). Feng Z; Qin G; Xicheng W Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973 [TBL] [Abstract][Full Text] [Related]
3. Reactivation kinetics of 5,5'-dithiobis-(2-nitrobenzoic acid)-modified creatine kinase reactivated by dithiothreitol. Yang Y; Zhou HM Biochim Biophys Acta; 1998 Oct; 1388(1):190-8. PubMed ID: 9774729 [TBL] [Abstract][Full Text] [Related]
4. Chemical modification studies on arginine kinase: essential cysteine and arginine residues at the active site. Zhu WJ; Li M; Wang XY Int J Biol Macromol; 2007 Dec; 41(5):564-71. PubMed ID: 17765964 [TBL] [Abstract][Full Text] [Related]
5. Conformational change and inactivation of arginine kinase from shrimp Feneropenaeus chinensis in oxidized dithiothreitol solutions. Pan JC; Yu ZH; Hui EF; Zhou HM Biochem Cell Biol; 2004 Jun; 82(3):361-7. PubMed ID: 15181469 [TBL] [Abstract][Full Text] [Related]
6. The role of Cys271 in conformational changes of arginine kinase. Liu N; Wang JS; Wang WD; Pan JC Int J Biol Macromol; 2011 Jul; 49(1):98-102. PubMed ID: 21507330 [TBL] [Abstract][Full Text] [Related]
7. Reactivation and refolding of a partially folded creatine kinase modified by 5,5'-dithio-bis(2-nitrobenzoic acid). Yang Y; Park YD; Yu TW; Zhou HM Biochem Biophys Res Commun; 1999 Jun; 259(2):450-4. PubMed ID: 10362528 [TBL] [Abstract][Full Text] [Related]
8. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway. Mu H; Zhou SM; Yang JM; Meng FG; Park YD Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285 [TBL] [Abstract][Full Text] [Related]
10. The active site cysteine of arginine kinase: structural and functional analysis of partially active mutants. Gattis JL; Ruben E; Fenley MO; Ellington WR; Chapman MS Biochemistry; 2004 Jul; 43(27):8680-9. PubMed ID: 15236576 [TBL] [Abstract][Full Text] [Related]
11. Exploration of the polar microenvironment around the reactive cysteine in rabbit muscle creatine kinase. He HW; Li J; Zhao TJ; Ma Y; Shi F; Zhou HM Int J Biol Macromol; 2007 Oct; 41(4):361-8. PubMed ID: 17592740 [TBL] [Abstract][Full Text] [Related]
12. The mechanism and modes of inhibition of arginine kinase from the cockroach (Periplaneta americana). Brown AE; Grossman SH Arch Insect Biochem Physiol; 2004 Dec; 57(4):166-77. PubMed ID: 15540275 [TBL] [Abstract][Full Text] [Related]
13. Val65 plays an important role in the substrate synergism, structural stability and activity of arginine kinase. Wu QY; Li F; Wang XY Int J Biol Macromol; 2009 Nov; 45(4):393-8. PubMed ID: 19628004 [TBL] [Abstract][Full Text] [Related]
14. Effect of cysteine modification on creatine kinase aggregation. Zou HC; Lü ZR; Wang YJ; Zhang YM; Zou F; Park YD Appl Biochem Biotechnol; 2009 Jan; 152(1):15-28. PubMed ID: 18548203 [TBL] [Abstract][Full Text] [Related]
15. Proton donor in yeast pyruvate kinase: chemical and kinetic properties of the active site Thr 298 to Cys mutant. Susan-Resiga D; Nowak T Biochemistry; 2004 Dec; 43(48):15230-45. PubMed ID: 15568816 [TBL] [Abstract][Full Text] [Related]
16. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases. Tanaka K; Suzuki T FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979 [TBL] [Abstract][Full Text] [Related]
17. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration. Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475 [TBL] [Abstract][Full Text] [Related]
18. Kinetic analysis of two purified forms of arginine kinase: absence of cooperativity in substrate binding of dimeric phosphagen kinase. Held BC; Wright-Weber B; Grossman SH Comp Biochem Physiol B Biochem Mol Biol; 2007 Sep; 148(1):6-13. PubMed ID: 17572125 [TBL] [Abstract][Full Text] [Related]
19. Purification, characterization, and hydrodynamic properties of arginine kinase from gulf shrimp (Penaeus aztecus). France RM; Sellers DS; Grossman SH Arch Biochem Biophys; 1997 Sep; 345(1):73-8. PubMed ID: 9281313 [TBL] [Abstract][Full Text] [Related]
20. Amino acid residues 62 and 193 play the key role in regulating the synergism of substrate binding in oyster arginine kinase. Fujimoto N; Tanaka K; Suzuki T FEBS Lett; 2005 Mar; 579(7):1688-92. PubMed ID: 15757662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]