These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1506384)

  • 1. A multipurpose instrument for quantitative intravital microscopy.
    Toth A; Tischler ME; Pal M; Koller A; Johnson PC
    J Appl Physiol (1985); 1992 Jul; 73(1):296-306. PubMed ID: 1506384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computer controlled system for multiple site microcirculatory measurements.
    Pál M; Tóth A; Wu CH; Tucker RA; Johnson PC
    Microvasc Res; 1993 Jan; 45(1):95-105. PubMed ID: 8479345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microcirculatory hematocrit and blood flow.
    Boyle J
    J Theor Biol; 1988 Mar; 131(2):223-9. PubMed ID: 3405001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution intravital NADH fluorescence microscopy allows measurements of tissue bioenergetics in rat ileal mucosa.
    Rose J; Martin C; MacDonald T; Ellis C
    Microcirculation; 2006 Jan; 13(1):41-7. PubMed ID: 16393945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An imaging spectroscopy approach for measurement of oxygen saturation and hematocrit during intravital microscopy.
    Styp-Rekowska B; Disassa NM; Reglin B; Ulm L; Kuppe H; Secomb TW; Pries AR
    Microcirculation; 2007; 14(3):207-21. PubMed ID: 17454673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution visualization of oxygen distribution in the liver in vivo.
    Paxian M; Keller SA; Cross B; Huynh TT; Clemens MG
    Am J Physiol Gastrointest Liver Physiol; 2004 Jan; 286(1):G37-44. PubMed ID: 12829437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible, computer-controlled video microscope capable of quantitative spatial, temporal, and spectral measurements.
    Rich ES; Wampler JE
    Clin Chem; 1981 Sep; 27(9):1558-68. PubMed ID: 6114805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADH videofluorimetry to monitor the energy state of skeletal muscle in vivo.
    van der Laan L; Coremans A; Ince C; Bruining HA
    J Surg Res; 1998 Feb; 74(2):155-60. PubMed ID: 9587354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The current status of methods of microscopy of microcirculatory bed vessels in vivo].
    Kozlov VI
    Arkh Anat Gistol Embriol; 1970; 59(10):102-8. PubMed ID: 4928980
    [No Abstract]   [Full Text] [Related]  

  • 11. [Determination of the rate of oxygen release from flowing erythrocytes in a microvessel--development of an apparatus and the application to microvessels of rat mesentery].
    Tateishi N
    Nihon Seirigaku Zasshi; 1990; 52(2):23-35. PubMed ID: 2139703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution microscopic determination of hepatic NADH fluorescence for in vivo monitoring of tissue oxygenation during hemorrhagic shock and resuscitation.
    Vollmar B; Burkhardt M; Minor T; Klauke H; Menger MD
    Microvasc Res; 1997 Sep; 54(2):164-73. PubMed ID: 9327387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope.
    Shonat RD; Wachman ES; Niu W; Koretsky AP; Farkas DL
    Biophys J; 1997 Sep; 73(3):1223-31. PubMed ID: 9284290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Possible pitfalls in the interpretation of microcirculatory measurements. A comparative study using intravital microscopy, spectroscopy and polarographic pO2 measurements.
    Düchs R; Foitzik T
    Eur Surg Res; 2008; 40(1):47-54. PubMed ID: 17921673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Cytoscan Model E-II, a new reflectance microscope for intravital microscopy: comparison with the standard fluorescence method.
    Harris AG; Sinitsina I; Messmer K
    J Vasc Res; 2000; 37(6):469-76. PubMed ID: 11146400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary and secondary microcirculatory disorders in essential hypertension.
    Jung F; Kolepke W; Spitzer S; Kiesewetter H; Ruprecht KW; Bach R; Schieffer H; Wenzel E
    Clin Investig; 1993 Feb; 71(2):132-8. PubMed ID: 8461624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New method: the intravital videomicroscopic characteristics of the microcirculation of the urinary bladder in rats.
    Bajory Z; Hutter J; Krombach F; Messmer K
    Urol Res; 2002 Jul; 30(3):148-52. PubMed ID: 12111176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatically-focusing cinemicrographic systems for in vivo microcirculatory research.
    Graham MD
    Bibl Anat; 1973; 11():37-43. PubMed ID: 4789066
    [No Abstract]   [Full Text] [Related]  

  • 19. The rate of oxygen release from single sinusoid of rat liver, determined by microspectroscopy.
    Yoshihara H; Fujita T; Harada N; Chen SS; Shiga T
    Med J Osaka Univ; 1993 Sep; 41-42(1-4):1-10. PubMed ID: 7476649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is the laser Doppler flow signal a measure of microcirculatory cell flux?
    Driessen G; Rütten W; Inhoffen W; Scheidt H; Heidtmann H
    Int J Microcirc Clin Exp; 1990 May; 9(2):141-61. PubMed ID: 2185171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.