BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 15063846)

  • 1. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase.
    Starai VJ; Takahashi H; Boeke JD; Escalante-Semerena JC
    Curr Opin Microbiol; 2004 Apr; 7(2):115-9. PubMed ID: 15063846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine.
    Starai VJ; Celic I; Cole RN; Boeke JD; Escalante-Semerena JC
    Science; 2002 Dec; 298(5602):2390-2. PubMed ID: 12493915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae.
    Starai VJ; Takahashi H; Boeke JD; Escalante-Semerena JC
    Genetics; 2003 Feb; 163(2):545-55. PubMed ID: 12618394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica.
    Starai VJ; Escalante-Semerena JC
    J Mol Biol; 2004 Jul; 340(5):1005-12. PubMed ID: 15236963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sir2 family of protein deacetylases.
    Blander G; Guarente L
    Annu Rev Biochem; 2004; 73():417-35. PubMed ID: 15189148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetyl-coenzyme A synthetase (AMP forming).
    Starai VJ; Escalante-Semerena JC
    Cell Mol Life Sci; 2004 Aug; 61(16):2020-30. PubMed ID: 15316652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
    Ingram-Smith C; Woods BI; Smith KS
    Biochemistry; 2006 Sep; 45(38):11482-90. PubMed ID: 16981708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIR2: the biochemical mechanism of NAD(+)-dependent protein deacetylation and ADP-ribosyl enzyme intermediates.
    Sauve AA; Schramm VL
    Curr Med Chem; 2004 Apr; 11(7):807-26. PubMed ID: 15078167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate.
    Chan CH; Garrity J; Crosby HA; Escalante-Semerena JC
    Mol Microbiol; 2011 Apr; 80(1):168-83. PubMed ID: 21306440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved metabolic regulatory functions of sirtuins.
    Schwer B; Verdin E
    Cell Metab; 2008 Feb; 7(2):104-12. PubMed ID: 18249170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuberculosis.
    Li R; Gu J; Chen P; Zhang Z; Deng J; Zhang X
    Acta Biochim Biophys Sin (Shanghai); 2011 Nov; 43(11):891-9. PubMed ID: 21896569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetate metabolism and aging: An emerging connection.
    Shimazu T; Hirschey MD; Huang JY; Ho LT; Verdin E
    Mech Ageing Dev; 2010; 131(7-8):511-6. PubMed ID: 20478325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase.
    Gardner JG; Escalante-Semerena JC
    J Bacteriol; 2009 Mar; 191(6):1749-55. PubMed ID: 19136592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism.
    Thao S; Escalante-Semerena JC
    mBio; 2011; 2(5):. PubMed ID: 22010215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deactylases.
    Marmorstein R
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):904-9. PubMed ID: 15506920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residue Leu-641 of Acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the Protein acetyltransferase enzyme of Salmonella enterica.
    Starai VJ; Gardner JG; Escalante-Semerena JC
    J Biol Chem; 2005 Jul; 280(28):26200-5. PubMed ID: 15899897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition.
    Sauve AA; Moir RD; Schramm VL; Willis IM
    Mol Cell; 2005 Feb; 17(4):595-601. PubMed ID: 15721262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation.
    Liou GG; Tanny JC; Kruger RG; Walz T; Moazed D
    Cell; 2005 May; 121(4):515-527. PubMed ID: 15907466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Budding yeast silencing complexes and regulation of Sir2 activity by protein-protein interactions.
    Tanny JC; Kirkpatrick DS; Gerber SA; Gygi SP; Moazed D
    Mol Cell Biol; 2004 Aug; 24(16):6931-46. PubMed ID: 15282295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.