These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The Caulobacter cell cycle: timing, spatial organization and checkpoints. Jenal U; Stephens C Curr Opin Microbiol; 2002 Dec; 5(6):558-63. PubMed ID: 12457698 [TBL] [Abstract][Full Text] [Related]
7. Dynamic localization of proteins and DNA during a bacterial cell cycle. Jensen RB; Wang SC; Shapiro L Nat Rev Mol Cell Biol; 2002 Mar; 3(3):167-76. PubMed ID: 11994737 [TBL] [Abstract][Full Text] [Related]
8. A bacterial cell-cycle regulatory network operating in time and space. McAdams HH; Shapiro L Science; 2003 Sep; 301(5641):1874-7. PubMed ID: 14512618 [TBL] [Abstract][Full Text] [Related]
9. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. McGrath PT; Iniesta AA; Ryan KR; Shapiro L; McAdams HH Cell; 2006 Feb; 124(3):535-47. PubMed ID: 16469700 [TBL] [Abstract][Full Text] [Related]
10. Morphological and functional asymmetry in alpha-proteobacteria. Hallez R; Bellefontaine AF; Letesson JJ; De Bolle X Trends Microbiol; 2004 Aug; 12(8):361-5. PubMed ID: 15276611 [TBL] [Abstract][Full Text] [Related]
11. Polar remodeling and histidine kinase activation, which is essential for Caulobacter cell cycle progression, are dependent on DNA replication initiation. Iniesta AA; Hillson NJ; Shapiro L J Bacteriol; 2010 Aug; 192(15):3893-902. PubMed ID: 20525830 [TBL] [Abstract][Full Text] [Related]
12. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus. Jensen RB J Bacteriol; 2006 Mar; 188(6):2244-53. PubMed ID: 16513754 [TBL] [Abstract][Full Text] [Related]
13. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Holtzendorff J; Hung D; Brende P; Reisenauer A; Viollier PH; McAdams HH; Shapiro L Science; 2004 May; 304(5673):983-7. PubMed ID: 15087506 [TBL] [Abstract][Full Text] [Related]
14. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Skerker JM; Laub MT Nat Rev Microbiol; 2004 Apr; 2(4):325-37. PubMed ID: 15031731 [No Abstract] [Full Text] [Related]
15. CtrA response regulator binding to the Caulobacter chromosome replication origin is required during nutrient and antibiotic stress as well as during cell cycle progression. Bastedo DP; Marczynski GT Mol Microbiol; 2009 Apr; 72(1):139-54. PubMed ID: 19220749 [TBL] [Abstract][Full Text] [Related]
17. Temporal and spatial regulation of differentiation in Caulobacter crescentus. Newton A Microbiol Sci; 1987 Nov; 4(11):338-41. PubMed ID: 3153599 [TBL] [Abstract][Full Text] [Related]
18. Spatial complexity and control of a bacterial cell cycle. Collier J; Shapiro L Curr Opin Biotechnol; 2007 Aug; 18(4):333-40. PubMed ID: 17709236 [TBL] [Abstract][Full Text] [Related]
19. Cell cycle control by oscillating regulatory proteins in Caulobacter crescentus. Holtzendorff J; Reinhardt J; Viollier PH Bioessays; 2006 Apr; 28(4):355-61. PubMed ID: 16547950 [TBL] [Abstract][Full Text] [Related]
20. DNA methylation in Caulobacter and other Alphaproteobacteria during cell cycle progression. Mohapatra SS; Fioravanti A; Biondi EG Trends Microbiol; 2014 Sep; 22(9):528-35. PubMed ID: 24894626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]