BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 15064368)

  • 1. Hydraulic analysis of water flow through leaves of sugar maple and red oak.
    Sack L; Streeter CM; Holbrook NM
    Plant Physiol; 2004 Apr; 134(4):1824-33. PubMed ID: 15064368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy investment in leaves of red maple and co-occurring oaks within a forested watershed.
    Nagel JM; Griffin KL; Schuster WS; Tissue DT; Turnbull MH; Brown KJ; Whitehead D
    Tree Physiol; 2002 Aug; 22(12):859-67. PubMed ID: 12184975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are leaves 'freewheelin'? Testing for a wheeler-type effect in leaf xylem hydraulic decline.
    Scoffoni C; Sack L
    Plant Cell Environ; 2015 Mar; 38(3):534-43. PubMed ID: 25039813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast-growing Acer rubrum differs from slow-growing Quercus alba in leaf, xylem and hydraulic trait coordination responses to simulated acid rain.
    Medeiros JS; Tomeo NJ; Hewins CR; Rosenthal DM
    Tree Physiol; 2016 Aug; 36(8):1032-44. PubMed ID: 27231270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption.
    Sack L; Dietrich EM; Streeter CM; Sánchez-Gómez D; Holbrook NM
    Proc Natl Acad Sci U S A; 2008 Feb; 105(5):1567-72. PubMed ID: 18227511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible Leaf Xylem Collapse: A Potential "Circuit Breaker" against Cavitation.
    Zhang YJ; Rockwell FE; Graham AC; Alexander T; Holbrook NM
    Plant Physiol; 2016 Dec; 172(4):2261-2274. PubMed ID: 27733514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light response of hydraulic conductance in bur oak (Quercus macrocarpa) leaves.
    Voicu MC; Zwiazek JJ; Tyree MT
    Tree Physiol; 2008 Jul; 28(7):1007-15. PubMed ID: 18450565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydraulic safety margins and air-seeding thresholds in roots, trunks, branches and petioles of four northern hardwood trees.
    Wason JW; Anstreicher KS; Stephansky N; Huggett BA; Brodersen CR
    New Phytol; 2018 Jul; 219(1):77-88. PubMed ID: 29663388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bundle sheath lignification mediates the linkage of leaf hydraulics and venation.
    Ohtsuka A; Sack L; Taneda H
    Plant Cell Environ; 2018 Feb; 41(2):342-353. PubMed ID: 29044569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO2-enriched atmosphere.
    Eguchi N; Morii N; Ueda T; Funada R; Takagi K; Hiura T; Sasa K; Koike T
    Tree Physiol; 2008 Feb; 28(2):287-95. PubMed ID: 18055439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture.
    Scoffoni C; Rawls M; McKown A; Cochard H; Sack L
    Plant Physiol; 2011 Jun; 156(2):832-43. PubMed ID: 21511989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of overstory density on ecophysiology of red oak (Quercus rubra) and sugar maple (Acer saccharum) seedlings in central Ontario shelterwoods.
    Parker WC; Dey DC
    Tree Physiol; 2008 May; 28(5):797-804. PubMed ID: 18316311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The major veins of mesomorphic leaves revisited: tests for conductive overload in Acer saccharum (Aceraceae) and Quercus rubra (Fagaceae).
    Sack L; Cowan PD; Holbrook NM
    Am J Bot; 2003 Jan; 90(1):32-9. PubMed ID: 21659078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic conductivity of red oak (Quercus rubra L.) leaf tissue does not respond to light.
    Rockwell FE; Holbrook NM; Zwieniecki MA
    Plant Cell Environ; 2011 Apr; 34(4):565-79. PubMed ID: 21309791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of stem water uptake among isohydric and anisohydric species experiencing a severe drought.
    Yi K; Dragoni D; Phillips RP; Roman DT; Novick KA
    Tree Physiol; 2017 Oct; 37(10):1379-1392. PubMed ID: 28062727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling of xylem vessels and veins within the leaves of oak species.
    Coomes DA; Heathcote S; Godfrey ER; Shepherd JJ; Sack L
    Biol Lett; 2008 Jun; 4(3):302-6. PubMed ID: 18407890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water stress-induced modifications of leaf hydraulic architecture in sunflower: co-ordination with gas exchange.
    Nardini A; Salleo S
    J Exp Bot; 2005 Dec; 56(422):3093-101. PubMed ID: 16246857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars.
    Barbehenn R; Cheek S; Gasperut A; Lister E; Maben R
    J Chem Ecol; 2005 May; 31(5):969-88. PubMed ID: 16124227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline.
    Scoffoni C; Albuquerque C; Brodersen CR; Townes SV; John GP; Cochard H; Buckley TN; McElrone AJ; Sack L
    New Phytol; 2017 Feb; 213(3):1076-1092. PubMed ID: 27861926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axial anatomy of the leaf midrib provides new insights into the hydraulic architecture and cavitation patterns of Acer pseudoplatanus leaves.
    Lechthaler S; Colangeli P; Gazzabin M; Anfodillo T
    J Exp Bot; 2019 Nov; 70(21):6195-6201. PubMed ID: 31365742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.