These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 15064646)

  • 1. Adaptations of skeletal muscle mitochondria to endurance exercise: a personal perspective.
    Holloszy JO
    Exerc Sport Sci Rev; 2004 Apr; 32(2):41-3. PubMed ID: 15064646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise-induced mitochondrial biogenesis in skeletal muscle.
    Hood DA; Saleem A
    Nutr Metab Cardiovasc Dis; 2007 Jun; 17(5):332-7. PubMed ID: 17467251
    [No Abstract]   [Full Text] [Related]  

  • 3. Adaptations of skeletal muscle mitochondria to exercise training.
    Lundby C; Jacobs RA
    Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular adaptations to endurance exercise: master athletes.
    Holloszy JO
    Int J Sport Nutr Exerc Metab; 2001 Dec; 11 Suppl():S186-8. PubMed ID: 11915919
    [No Abstract]   [Full Text] [Related]  

  • 5. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training.
    Seene T; Kaasik P; Umnova M
    J Sports Med Phys Fitness; 2009 Dec; 49(4):410-23. PubMed ID: 20087301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1996 J.B. Wolffe Memorial Lecture. Challenging beliefs: ex Africa semper aliquid novi.
    Noakes TD
    Med Sci Sports Exerc; 1997 May; 29(5):571-90. PubMed ID: 9140893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of skeletal muscle mitochondria: structure and function.
    Hoppeler H; Fluck M
    Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Principles of exercise physiology: responses to acute exercise and long-term adaptations to training.
    Rivera-Brown AM; Frontera WR
    PM R; 2012 Nov; 4(11):797-804. PubMed ID: 23174541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
    Terada S; Nakagawa H; Nakamura Y; Muraoka I
    Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise-Induced Mitophagy in Skeletal Muscle and Heart.
    Guan Y; Drake JC; Yan Z
    Exerc Sport Sci Rev; 2019 Jul; 47(3):151-156. PubMed ID: 30985475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physical exercise and mitochondrial function in human skeletal muscle.
    Tonkonogi M; Sahlin K
    Exerc Sport Sci Rev; 2002 Jul; 30(3):129-37. PubMed ID: 12150572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of metabolic adaptations between endurance- and sprint-trained athletes after an exhaustive exercise in two different calf muscles using a multi-slice
    Moll K; Gussew A; Nisser M; Derlien S; Krämer M; Reichenbach JR
    NMR Biomed; 2018 Apr; 31(4):e3889. PubMed ID: 29393546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences.
    Holloszy JO; Coyle EF
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Apr; 56(4):831-8. PubMed ID: 6373687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling.
    Neubauer O; Sabapathy S; Ashton KJ; Desbrow B; Peake JM; Lazarus R; Wessner B; Cameron-Smith D; Wagner KH; Haseler LJ; Bulmer AC
    J Appl Physiol (1985); 2014 Feb; 116(3):274-87. PubMed ID: 24311745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic and epigenetic sex-specific adaptations to endurance exercise.
    Landen S; Voisin S; Craig JM; McGee SL; Lamon S; Eynon N
    Epigenetics; 2019 Jun; 14(6):523-535. PubMed ID: 30957644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Running forward: new frontiers in endurance exercise biology.
    Rowe GC; Safdar A; Arany Z
    Circulation; 2014 Feb; 129(7):798-810. PubMed ID: 24550551
    [No Abstract]   [Full Text] [Related]  

  • 17. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans.
    Rose AJ; Frøsig C; Kiens B; Wojtaszewski JF; Richter EA
    J Physiol; 2007 Sep; 583(Pt 2):785-95. PubMed ID: 17627985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.
    Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C
    J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptations of skeletal muscle to prolonged, intense endurance training.
    Hawley JA
    Clin Exp Pharmacol Physiol; 2002 Mar; 29(3):218-22. PubMed ID: 11906487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training.
    Montero D; Cathomen A; Jacobs RA; Flück D; de Leur J; Keiser S; Bonne T; Kirk N; Lundby AK; Lundby C
    J Physiol; 2015 Oct; 593(20):4677-88. PubMed ID: 26282186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.