These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 15064646)

  • 21. NAD(+)/NADH and skeletal muscle mitochondrial adaptations to exercise.
    White AT; Schenk S
    Am J Physiol Endocrinol Metab; 2012 Aug; 303(3):E308-21. PubMed ID: 22436696
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The elite cross-country skier provides unique insights into human exercise physiology.
    Holmberg HC
    Scand J Med Sci Sports; 2015 Dec; 25 Suppl 4():100-9. PubMed ID: 26589123
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.
    Gibala MJ; Little JP; van Essen M; Wilkin GP; Burgomaster KA; Safdar A; Raha S; Tarnopolsky MA
    J Physiol; 2006 Sep; 575(Pt 3):901-11. PubMed ID: 16825308
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal muscle: master or slave of the cardiovascular system?
    Richardson RS; Harms CA; Grassi B; Hepple RT
    Med Sci Sports Exerc; 2000 Jan; 32(1):89-93. PubMed ID: 10647534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of endurance training on parameters of aerobic fitness.
    Jones AM; Carter H
    Sports Med; 2000 Jun; 29(6):373-86. PubMed ID: 10870864
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skeletal muscle adaptation to exercise: a century of progress.
    Hamilton MT; Booth FW
    J Appl Physiol (1985); 2000 Jan; 88(1):327-31. PubMed ID: 10642397
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive strategies of respiratory muscles in response to endurance exercise.
    Powers SK; Criswell D
    Med Sci Sports Exerc; 1996 Sep; 28(9):1115-22. PubMed ID: 8882998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond muscle hypertrophy: why dietary protein is important for endurance athletes.
    Moore DR; Camera DM; Areta JL; Hawley JA
    Appl Physiol Nutr Metab; 2014 Sep; 39(9):987-97. PubMed ID: 24806440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Applied exercise physiology: a personal perspective of the past, present, and future.
    Wilmore JH
    Exerc Sport Sci Rev; 2003 Oct; 31(4):159-60. PubMed ID: 14571953
    [No Abstract]   [Full Text] [Related]  

  • 31. Differential Effect of Endurance Training on Mitochondrial Protein Damage, Degradation, and Acetylation in the Context of Aging.
    Johnson ML; Irving BA; Lanza IR; Vendelbo MH; Konopka AR; Robinson MM; Henderson GC; Klaus KA; Morse DM; Heppelmann C; Bergen HR; Dasari S; Schimke JM; Jakaitis DR; Nair KS
    J Gerontol A Biol Sci Med Sci; 2015 Nov; 70(11):1386-93. PubMed ID: 25504576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of increased and maintained frequency of speed endurance training on performance and muscle adaptations in runners.
    Skovgaard C; Almquist NW; Bangsbo J
    J Appl Physiol (1985); 2017 Jan; 122(1):48-59. PubMed ID: 27856713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasticity of skeletal muscle mitochondria in response to contractile activity.
    Adhihetty PJ; Irrcher I; Joseph AM; Ljubicic V; Hood DA
    Exp Physiol; 2003 Jan; 88(1):99-107. PubMed ID: 12525859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise.
    Joseph AM; Pilegaard H; Litvintsev A; Leick L; Hood DA
    Essays Biochem; 2006; 42():13-29. PubMed ID: 17144877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients.
    Zoll J; N'Guessan B; Ribera F; Lampert E; Fortin D; Veksler V; Bigard X; Geny B; Lonsdorfer J; Ventura-Clapier R; Mettauer B
    J Am Coll Cardiol; 2003 Jul; 42(1):126-32. PubMed ID: 12849672
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Sex differences in sports performance].
    Kanstrup IL; Hansen M; Kjaer M
    Ugeskr Laeger; 2006 Dec; 168(51):4507. PubMed ID: 17228407
    [No Abstract]   [Full Text] [Related]  

  • 38. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect.
    Murach KA; Bagley JR
    Sports Med; 2016 Aug; 46(8):1029-39. PubMed ID: 26932769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Limits of Exercise Physiology: From Performance to Health.
    Gabriel BM; Zierath JR
    Cell Metab; 2017 May; 25(5):1000-1011. PubMed ID: 28467920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Very intense exercise-training is extremely potent and time efficient: a reminder.
    Coyle EF
    J Appl Physiol (1985); 2005 Jun; 98(6):1983-4. PubMed ID: 15894535
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.