These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15064646)

  • 41. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle.
    Fernström M; Tonkonogi M; Sahlin K
    J Physiol; 2004 Feb; 554(Pt 3):755-63. PubMed ID: 14634202
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contractile activity-induced mitochondrial biogenesis in skeletal muscle.
    Essig DA
    Exerc Sport Sci Rev; 1996; 24():289-319. PubMed ID: 8744254
    [No Abstract]   [Full Text] [Related]  

  • 43. Physiological and performance adaptations to high-intensity interval training.
    Gibala MJ; Jones AM
    Nestle Nutr Inst Workshop Ser; 2013; 76():51-60. PubMed ID: 23899754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle.
    Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R
    J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training.
    Nordsborg NB; Connolly L; Weihe P; Iuliano E; Krustrup P; Saltin B; Mohr M
    J Appl Physiol (1985); 2015 Jul; 119(2):116-23. PubMed ID: 26023221
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Taking a HIT for the heart: why training intensity matters.
    Murray AJ
    J Appl Physiol (1985); 2011 Nov; 111(5):1229-30. PubMed ID: 21885798
    [No Abstract]   [Full Text] [Related]  

  • 47. Vitamin C and E supplementation prevents some of the cellular adaptations to endurance-training in humans.
    Morrison D; Hughes J; Della Gatta PA; Mason S; Lamon S; Russell AP; Wadley GD
    Free Radic Biol Med; 2015 Dec; 89():852-62. PubMed ID: 26482865
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Physiological implications of altitude training for endurance performance at sea level: a review.
    Bailey DM; Davies B
    Br J Sports Med; 1997 Sep; 31(3):183-90. PubMed ID: 9298550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Divergent effects of acute exercise and endurance training on UCP3 expression.
    Hesselink MK; Schrauwen P; Holloszy JO; Jones TE
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E449-50; author reply 450-1. PubMed ID: 12531748
    [No Abstract]   [Full Text] [Related]  

  • 50. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle.
    Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K
    J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endurance exercise protects skeletal muscle against both doxorubicin-induced and inactivity-induced muscle wasting.
    Powers SK; Duarte JA; Le Nguyen B; Hyatt H
    Pflugers Arch; 2019 Mar; 471(3):441-453. PubMed ID: 30426248
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Concurrent strength and endurance training exercise sequence does not affect neuromuscular adaptations in older men.
    Wilhelm EN; Rech A; Minozzo F; Botton CE; Radaelli R; Teixeira BC; Reischak-Oliveira A; Pinto RS
    Exp Gerontol; 2014 Dec; 60():207-14. PubMed ID: 25449853
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Similar skeletal muscle angiogenic and mitochondrial signalling following 8 weeks of endurance exercise in mice: discontinuous versus continuous training.
    Malek MH; Hüttemann M; Lee I; Coburn JW
    Exp Physiol; 2013 Mar; 98(3):807-18. PubMed ID: 23180811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endurance exercise mimetics in skeletal muscle.
    Matsakas A; Narkar VA
    Curr Sports Med Rep; 2010; 9(4):227-32. PubMed ID: 20622541
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial biogenesis in skeletal muscle in response to endurance exercises.
    Freyssenet D; Berthon P; Denis C
    Arch Physiol Biochem; 1996; 104(2):129-41. PubMed ID: 8818195
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Skeletal muscle adaptations to endurance training: is tissue hypoxia the main signal?
    Lundby C
    Exp Physiol; 2016 Jan; 101(1):15-6. PubMed ID: 26782266
    [No Abstract]   [Full Text] [Related]  

  • 57. Xanthine oxidase inhibition attenuates skeletal muscle signaling following acute exercise but does not impair mitochondrial adaptations to endurance training.
    Wadley GD; Nicolas MA; Hiam DS; McConell GK
    Am J Physiol Endocrinol Metab; 2013 Apr; 304(8):E853-62. PubMed ID: 23462817
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endurance training, resistance training, body composition, or different disease states can lead to diverse adaptations in cardiac structure and/or function.
    Vella CA; Robergs RA
    J Appl Physiol (1985); 2008 Jan; 104(1):282; author reply 284-5. PubMed ID: 18271076
    [No Abstract]   [Full Text] [Related]  

  • 59. MicroRNAs and exercise-induced skeletal muscle adaptations.
    Drummond MJ
    J Physiol; 2010 Oct; 588(Pt 20):3849-50. PubMed ID: 20952375
    [No Abstract]   [Full Text] [Related]  

  • 60. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise.
    Winder WW; Taylor EB; Thomson DM
    Med Sci Sports Exerc; 2006 Nov; 38(11):1945-9. PubMed ID: 17095928
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.