These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 15064654)
1. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Shera CA Ear Hear; 2004 Apr; 25(2):86-97. PubMed ID: 15064654 [TBL] [Abstract][Full Text] [Related]
2. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. Shera CA; Guinan JJ J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564 [TBL] [Abstract][Full Text] [Related]
3. Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: implications for inner ear mechanics. Meenderink SW; Narins PM Hear Res; 2006 Oct; 220(1-2):67-75. PubMed ID: 16942850 [TBL] [Abstract][Full Text] [Related]
4. Cochlear sources and otoacoustic emissions. Johnson TA J Am Acad Audiol; 2010 Mar; 21(3):176-86. PubMed ID: 20211122 [TBL] [Abstract][Full Text] [Related]
5. Characterizing the Relationship Between Reflection and Distortion Otoacoustic Emissions in Normal-Hearing Adults. Abdala C; Luo P; Shera CA J Assoc Res Otolaryngol; 2022 Oct; 23(5):647-664. PubMed ID: 35804277 [TBL] [Abstract][Full Text] [Related]
6. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. Verhulst S; Dau T; Shera CA J Acoust Soc Am; 2012 Dec; 132(6):3842-8. PubMed ID: 23231114 [TBL] [Abstract][Full Text] [Related]
14. Otoacoustic emissions, their origin in cochlear function, and use. Kemp DT Br Med Bull; 2002; 63():223-41. PubMed ID: 12324396 [TBL] [Abstract][Full Text] [Related]
15. Sources and mechanisms of DPOAE generation: implications for the prediction of auditory sensitivity. Shaffer LA; Withnell RH; Dhar S; Lilly DJ; Goodman SS; Harmon KM Ear Hear; 2003 Oct; 24(5):367-79. PubMed ID: 14534408 [TBL] [Abstract][Full Text] [Related]
16. An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences. Lineton B; Thornton AR; Baker VJ Hear Res; 2006 Sep; 219(1-2):24-35. PubMed ID: 16839721 [TBL] [Abstract][Full Text] [Related]
17. Quantitative assessment of methods for the detection of otoacoustic emissions. Brass D; Kemp DT Ear Hear; 1994 Oct; 15(5):378-89. PubMed ID: 7813824 [TBL] [Abstract][Full Text] [Related]
18. Influence of primary frequencies ratio on distortion product otoacoustic emissions amplitude. II. Interrelations between multicomponent DPOAEs, tone-burst-evoked OAEs, and spontaneous OAEs. Moulin A J Acoust Soc Am; 2000 Mar; 107(3):1471-86. PubMed ID: 10738802 [TBL] [Abstract][Full Text] [Related]
19. The effects of chronic otitis media with effusion on the measurement of transiently evoked otoacoustic emissions. Amedee RG Laryngoscope; 1995 Jun; 105(6):589-95. PubMed ID: 7769941 [TBL] [Abstract][Full Text] [Related]
20. Species differences of distortion-product otoacoustic emissions: comment on "Interpretation of distortion product otoacoustic emission measurements. I. Two stimulus tones" [J. Acoust. Soc. Am. 102, 413-429 (1997)]. Whitehead ML J Acoust Soc Am; 1998 May; 103(5 Pt 1):2740-2. PubMed ID: 9604365 [No Abstract] [Full Text] [Related] [Next] [New Search]