BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 15064727)

  • 1. Binding of RNA to p53 regulates its oligomerization and DNA-binding activity.
    Yoshida Y; Izumi H; Torigoe T; Ishiguchi H; Yoshida T; Itoh H; Kohno K
    Oncogene; 2004 May; 23(25):4371-9. PubMed ID: 15064727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site.
    Rolley N; Milner J
    Oncogene; 1994 Oct; 9(10):3067-70. PubMed ID: 8084615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2.
    Pospísilová S; Brázda V; Kucharíková K; Luciani MG; Hupp TR; Skládal P; Palecek E; Vojtesek B
    Biochem J; 2004 Mar; 378(Pt 3):939-47. PubMed ID: 14640983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation by DNAPK inhibits the DNA-binding function of p53/T antigen complex in vitro.
    Sheppard HM; Liu X
    Anticancer Res; 1999; 19(3A):2079-83. PubMed ID: 10470151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latent and active p53 are identical in conformation.
    Ayed A; Mulder FA; Yi GS; Lu Y; Kay LE; Arrowsmith CH
    Nat Struct Biol; 2001 Sep; 8(9):756-60. PubMed ID: 11524676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of cisplatin-damaged DNA by p53 protein: critical role of the p53 C-terminal domain.
    Pivonková H; Brázdová M; Kaspárková J; Brabec V; Fojta M
    Biochem Biophys Res Commun; 2006 Jan; 339(2):477-84. PubMed ID: 16300733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New monoclonal antibodies recognizing p53 protein phosphorylated by casein kinase II at serine 392.
    Pospísilová S; Kanková K; Svitáková M; Nenutil R; Vojtesek B
    Folia Biol (Praha); 2001; 47(4):148-51. PubMed ID: 11508859
    [No Abstract]   [Full Text] [Related]  

  • 8. Cdk9 phosphorylates p53 on serine 392 independently of CKII.
    Claudio PP; Cui J; Ghafouri M; Mariano C; White MK; Safak M; Sheffield JB; Giordano A; Khalili K; Amini S; Sawaya BE
    J Cell Physiol; 2006 Sep; 208(3):602-12. PubMed ID: 16741955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of heterogeneous nuclear ribonucleoprotein C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment.
    Christian KJ; Lang MA; Raffalli-Mathieu F
    Mol Pharmacol; 2008 May; 73(5):1558-67. PubMed ID: 18296503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase A phosphorylates and regulates dimerization of 14-3-3 epsilon.
    Gu YM; Jin YH; Choi JK; Baek KH; Yeo CY; Lee KY
    FEBS Lett; 2006 Jan; 580(1):305-10. PubMed ID: 16376338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Posttranslational modifications affect the interaction of S100 proteins with tumor suppressor p53.
    van Dieck J; Teufel DP; Jaulent AM; Fernandez-Fernandez MR; Rutherford TJ; Wyslouch-Cieszynska A; Fersht AR
    J Mol Biol; 2009 Dec; 394(5):922-30. PubMed ID: 19819244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Restoring wtp53 activity in HIPK2 depleted MCF7 cells by modulating metallothionein and zinc.
    Puca R; Nardinocchi L; Bossi G; Sacchi A; Rechavi G; Givol D; D'Orazi G
    Exp Cell Res; 2009 Jan; 315(1):67-75. PubMed ID: 18996371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylation and phosphorylation of the carboxy-terminal domain of p53: regulative significance.
    Chiarugi V; Cinelli M; Magnelli L
    Oncol Res; 1998; 10(2):55-7. PubMed ID: 9666512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex regulation of the DNA-binding activity of p53 by phosphorylation: differential effects of individual phosphorylation sites on the interaction with different binding motifs.
    Hecker D; Page G; Lohrum M; Weiland S; Scheidtmann KH
    Oncogene; 1996 Mar; 12(5):953-61. PubMed ID: 8649812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The DNA binding regulatory domain of p53: see the C.
    Wolkowicz R; Rotter V
    Pathol Biol (Paris); 1997 Dec; 45(10):785-96. PubMed ID: 9769942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIPK2 contributes to PCAF-mediated p53 acetylation and selective transactivation of p21Waf1 after nonapoptotic DNA damage.
    Di Stefano V; Soddu S; Sacchi A; D'Orazi G
    Oncogene; 2005 Aug; 24(35):5431-42. PubMed ID: 15897882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl.
    Xu H; Tai J; Ye H; Kang CB; Yoon HS
    Biochem Biophys Res Commun; 2006 Mar; 341(4):938-44. PubMed ID: 16455050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breast cancer amplified sequence 2, a novel negative regulator of the p53 tumor suppressor.
    Kuo PC; Tsao YP; Chang HW; Chen PH; Huang CW; Lin ST; Weng YT; Tsai TC; Shieh SY; Chen SL
    Cancer Res; 2009 Dec; 69(23):8877-85. PubMed ID: 19903847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into p53 function from structural studies.
    Arrowsmith CH; Morin P
    Oncogene; 1996 Apr; 12(7):1379-85. PubMed ID: 8622853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.