BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 15064877)

  • 41. Control of grip force when tilting objects: effect of curvature of grasped surfaces and applied tangential torque.
    Goodwin AW; Jenmalm P; Johansson RS
    J Neurosci; 1998 Dec; 18(24):10724-34. PubMed ID: 9852607
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Sensorimotor aspects of high-speed artificial gravity: III. Sensorimotor adaptation.
    DiZio P; Lackner JR
    J Vestib Res; 2002-2003; 12(5-6):291-9. PubMed ID: 14501105
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual feedback of the moving arm allows complete adaptation of pointing movements to centrifugal and Coriolis forces in human subjects.
    Bourdin C; Gauthier G; Blouin J; Vercher JL
    Neurosci Lett; 2001 Mar; 301(1):25-8. PubMed ID: 11239708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Anticipating load torques produced by voluntary movements.
    Wing AM; Lederman SJ
    J Exp Psychol Hum Percept Perform; 1998 Dec; 24(6):1571-81. PubMed ID: 9861711
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Grip forces during fast point-to-point and continuous hand movements.
    Viviani P; Lacquaniti F
    Exp Brain Res; 2015 Nov; 233(11):3201-20. PubMed ID: 26223578
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A higher-order mechanism overrules the automatic grip-load force constraint during bimanual asymmetrical movements.
    Serrien DJ; Wiesendanger M
    Behav Brain Res; 2001 Jan; 118(2):153-60. PubMed ID: 11164512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predictive control of grip force when moving object with an elastic load applied on the arm.
    Descoins M; Danion F; Bootsma RJ
    Exp Brain Res; 2006 Jul; 172(3):331-42. PubMed ID: 16450105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intermittent coupling between grip force and load force during oscillations of a hand-held object.
    Grover F; Lamb M; Bonnette S; Silva PL; Lorenz T; Riley MA
    Exp Brain Res; 2018 Oct; 236(10):2531-2544. PubMed ID: 29931568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The effects of a change in gravity on the dynamics of prehension.
    Augurelle AS; Penta M; White O; Thonnard JL
    Exp Brain Res; 2003 Feb; 148(4):533-40. PubMed ID: 12582839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Congenitally blind individuals rapidly adapt to coriolis force perturbations of their reaching movements.
    DiZio P; Lackner JR
    J Neurophysiol; 2000 Oct; 84(4):2175-80. PubMed ID: 11024106
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Preserved and impaired aspects of feed-forward grip force control after chronic somatosensory deafferentation.
    Hermsdörfer J; Elias Z; Cole JD; Quaney BM; Nowak DA
    Neurorehabil Neural Repair; 2008; 22(4):374-84. PubMed ID: 18223241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation.
    Ehrsson HH; Fagergren A; Johansson RS; Forssberg H
    J Neurophysiol; 2003 Nov; 90(5):2978-86. PubMed ID: 14615423
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Motor control goes beyond physics: differential effects of gravity and inertia on finger forces during manipulation of hand-held objects.
    Zatsiorsky VM; Gao F; Latash ML
    Exp Brain Res; 2005 Apr; 162(3):300-8. PubMed ID: 15580485
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment.
    Bourdin C; Bringoux L; Gauthier GM; Vercher JL
    Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensorimotor adaptation to inertial forces in a multi-force environment does not depend on the number of targets: indirect validation of the altered-proprioception hypothesis.
    Bourdin C; Bock O
    Neurosci Lett; 2006 Nov; 408(3):173-7. PubMed ID: 17030093
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Do novel gravitational environments alter the grip-force/load-force coupling at the fingertips?
    White O; McIntyre J; Augurelle AS; Thonnard JL
    Exp Brain Res; 2005 Jun; 163(3):324-34. PubMed ID: 15635455
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adaptation to Coriolis force perturbations of postural sway requires an asymmetric two-leg model.
    Bakshi A; DiZio P; Lackner JR
    J Neurophysiol; 2019 Jun; 121(6):2042-2060. PubMed ID: 30943111
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anticipatory modulation of precision grip force with variations in limb velocity of a curvilinear movement.
    Weeks DL; Sherwood DE; Noteboom JT
    J Mot Behav; 2002 Mar; 34(1):59-66. PubMed ID: 11880250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The contribution of non-digital afferent signals to grip force adjustments evoked by brisk unloading of the arm or the held object.
    Danion F
    Clin Neurophysiol; 2007 Jan; 118(1):146-54. PubMed ID: 17070731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of direction of head movement on motion sickness caused by Coriolis stimulation.
    Woodman PD; Griffin MJ
    Aviat Space Environ Med; 1997 Feb; 68(2):93-8. PubMed ID: 9125096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.