These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15065817)

  • 1. The pharmacology of vertebrate spinal central pattern generators.
    Alford S; Schwartz E; Viana di Prisco G
    Neuroscientist; 2003 Jun; 9(3):217-28. PubMed ID: 15065817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons.
    Li WC
    Integr Comp Biol; 2011 Dec; 51(6):879-89. PubMed ID: 21562024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic function of a neuronal network - a vertebrate central pattern generator.
    Grillner S; Ekeberg ; El Manira A; Lansner A; Parker D; Tegnér J; Wallén P
    Brain Res Brain Res Rev; 1998 May; 26(2-3):184-97. PubMed ID: 9651523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system.
    Nistri A; Ostroumov K; Sharifullina E; Taccola G
    J Physiol; 2006 Apr; 572(Pt 2):323-34. PubMed ID: 16469790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmental oscillators in axial motor circuits of the salamander: distribution and bursting mechanisms.
    Ryczko D; Charrier V; Ijspeert A; Cabelguen JM
    J Neurophysiol; 2010 Nov; 104(5):2677-92. PubMed ID: 20810687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocannabinoid signaling in the spinal locomotor circuitry.
    El Manira A; Kyriakatos A; Nanou E; Mahmood R
    Brain Res Rev; 2008 Jan; 57(1):29-36. PubMed ID: 17719648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory properties of the central pattern generator for locomotion in neonatal rats.
    Sqalli-Houssaini Y; Cazalets JR; Clarac F
    J Neurophysiol; 1993 Aug; 70(2):803-13. PubMed ID: 8410173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of networks controlling locomotion and significance of voltage dependency of NMDA channels: stimulation study of rhythm generation sustained by positive feedback.
    Roberts A; Tunstall MJ; Wolf E
    J Neurophysiol; 1995 Feb; 73(2):485-95. PubMed ID: 7539058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion.
    Di Prisco GV; Pearlstein E; Robitaille R; Dubuc R
    Science; 1997 Nov; 278(5340):1122-5. PubMed ID: 9353193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical study on ionic mechanism of lamprey central pattern generator model.
    Zhang D; Zhu X; Lan L; Zhu K
    Int J Neural Syst; 2009 Dec; 19(6):409-24. PubMed ID: 20039464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetry in locomotor central pattern generators and animal gaits.
    Golubitsky M; Stewart I; Buono PL; Collins JJ
    Nature; 1999 Oct; 401(6754):693-5. PubMed ID: 10537106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Receptor and voltage-operated ion channels in the central nervous system.
    Antkiewicz-Michaluk L
    Pol J Pharmacol; 1995; 47(3):253-64. PubMed ID: 8714758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmogenesis in axial locomotor networks: an interspecies comparison.
    Ryczko D; Dubuc R; Cabelguen JM
    Prog Brain Res; 2010; 187():189-211. PubMed ID: 21111209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From lamprey to salamander: an exploratory modeling study on the architecture of the spinal locomotor networks in the salamander.
    Bicanski A; Ryczko D; Cabelguen JM; Ijspeert AJ
    Biol Cybern; 2013 Oct; 107(5):565-87. PubMed ID: 23463500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voltage-sensitive ion channels in rhythmic motor systems.
    Harris-Warrick RM
    Curr Opin Neurobiol; 2002 Dec; 12(6):646-51. PubMed ID: 12490254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Separate signalling mechanisms underlie mGluR1 modulation of leak channels and NMDA receptors in the network underlying locomotion.
    Nanou E; Kyriakatos A; Kettunen P; El Manira A
    J Physiol; 2009 Jun; 587(Pt 12):3001-8. PubMed ID: 19403613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord.
    Schmidt BJ; Hochman S; MacLean JN
    Ann N Y Acad Sci; 1998 Nov; 860():189-202. PubMed ID: 9928312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.