These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
852 related articles for article (PubMed ID: 15065885)
1. The time-dependent distribution of phosphorylated intermediates in native sarcoplasmic reticulum Ca2+-ATPase from skeletal muscle is not compatible with a linear kinetic model. Mahaney JE; Thomas DD; Froehlich JP Biochemistry; 2004 Apr; 43(14):4400-16. PubMed ID: 15065885 [TBL] [Abstract][Full Text] [Related]
2. Intermolecular conformational coupling and free energy exchange enhance the catalytic efficiency of cardiac muscle SERCA2a following the relief of phospholamban inhibition. Mahaney JE; Albers RW; Waggoner JR; Kutchai HC; Froehlich JP Biochemistry; 2005 May; 44(21):7713-24. PubMed ID: 15909986 [TBL] [Abstract][Full Text] [Related]
3. Intermolecular interactions in the mechanism of skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1): evidence for a triprotomer. Mahaney JE; Thomas DD; Farrance IK; Froehlich JP Biochemistry; 2008 Dec; 47(51):13711-25. PubMed ID: 19046074 [TBL] [Abstract][Full Text] [Related]
4. Phosphoenzyme decomposition in dog cardiac sarcoplasmic reticulum Ca2+-ATPase. Wang T Biochemistry; 1987 Dec; 26(25):8360-5. PubMed ID: 2964866 [TBL] [Abstract][Full Text] [Related]
5. Formation of the ADP-insensitive phosphoenzyme intermediate in the sarcoplasmic reticulum Ca2+-ATPase of which both Cys344 and Cys364 are modified by N-ethylmaleimide. Suzuki H; Kanazawa T Biochemistry; 1999 Jan; 38(2):820-5. PubMed ID: 9888823 [TBL] [Abstract][Full Text] [Related]
6. Glutamate-183 in the conserved TGES motif of domain A of sarcoplasmic reticulum Ca2+-ATPase assists in catalysis of E2/E2P partial reactions. Clausen JD; Vilsen B; McIntosh DB; Einholm AP; Andersen JP Proc Natl Acad Sci U S A; 2004 Mar; 101(9):2776-81. PubMed ID: 14970331 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the E1/E1P-E2/E2P conformation changes in the sarcoplasmic reticulum Ca(2+)-ATPase studied by site-specific mutagenesis. Andersen JP; Vilsen B Acta Physiol Scand Suppl; 1992; 607():151-9. PubMed ID: 1449062 [TBL] [Abstract][Full Text] [Related]
8. Pre-steady-state kinetic study of the mechanism of inhibition of the plasma membrane Ca(2+)-ATPase by lanthanum. Herscher CJ; Rega AF Biochemistry; 1996 Nov; 35(47):14917-22. PubMed ID: 8942656 [TBL] [Abstract][Full Text] [Related]
9. Transient-state kinetics of phosphoenzyme transformation in the rabbit skeletal sarcoplasmic reticulum calcium-dependent adenosine triphosphatase reaction. Two distinct modes of ADP and K+ regulation. Wang T J Biol Chem; 1986 May; 261(14):6307-19. PubMed ID: 2939073 [TBL] [Abstract][Full Text] [Related]
10. Difference in kinetic properties of phosphorylated intermediates formed in the forward and backward reactions of solubilized Ca2+-ATPase of sarcoplasmic reticulum. Nakamura Y J Biochem; 1980 Jul; 88(1):177-81. PubMed ID: 6447692 [TBL] [Abstract][Full Text] [Related]
11. Phospholamban-dependent effects of C12E8 on calcium transport and molecular dynamics in cardiac sarcoplasmic reticulum. Shi Y; Karon BS; Kutchai H; Thomas DD Biochemistry; 1996 Oct; 35(41):13393-9. PubMed ID: 8873607 [TBL] [Abstract][Full Text] [Related]
12. ADP stimulates hydrolysis of the "ADP-insensitive" phosphoenzyme in Na+, K+-ATPase and Ca2+-ATPase. Hobbs AS; Albers RW; Froehlich JP; Heller PF J Biol Chem; 1985 Feb; 260(4):2035-7. PubMed ID: 2982802 [TBL] [Abstract][Full Text] [Related]
13. Erythrosin isothiocyanate selectively labels lysine464 within an ATP-protectable binding site on the Ca-ATPase in skeletal sarcoplasmic reticulum membranes. Huang S; Negash S; Squier TC Biochemistry; 1998 May; 37(19):6949-57. PubMed ID: 9578581 [TBL] [Abstract][Full Text] [Related]
14. Val200 residue in Lys189-Lys205 outermost loop on the A domain of sarcoplasmic reticulum Ca2+-ATPase is critical for rapid processing of phosphoenzyme intermediate after loss of ADP sensitivity. Kato S; Kamidochi M; Daiho T; Yamasaki K; Gouli W; Suzuki H J Biol Chem; 2003 Mar; 278(11):9624-9. PubMed ID: 12496291 [TBL] [Abstract][Full Text] [Related]
15. Functional consequences of alterations to Thr247, Pro248, Glu340, Asp813, Arg819, and Arg822 at the interfaces between domain P, M3, and L6-7 of sarcoplasmic reticulum Ca2+-ATPase. Roles in Ca2+ interaction and phosphoenzyme processing. Clausen JD; Andersen JP J Biol Chem; 2004 Dec; 279(52):54426-37. PubMed ID: 15485864 [TBL] [Abstract][Full Text] [Related]
16. Critical hydrophobic interactions between phosphorylation and actuator domains of Ca2+-ATPase for hydrolysis of phosphorylated intermediate. Wang G; Yamasaki K; Daiho T; Suzuki H J Biol Chem; 2005 Jul; 280(28):26508-16. PubMed ID: 15901722 [TBL] [Abstract][Full Text] [Related]
17. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase. Medda P; Fassold E; Hasselbach W Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819 [TBL] [Abstract][Full Text] [Related]
18. Roles of Leu249, Lys252, and Leu253 in membrane segment M3 of sarcoplasmic reticulum Ca2+-ATPase in control of Ca2+ migration and long-range intramolecular communication. Clausen JD; Andersen JP Biochemistry; 2003 Mar; 42(9):2585-94. PubMed ID: 12614153 [TBL] [Abstract][Full Text] [Related]
19. Phosphorylation of phospholamban by cAMP-dependent protein kinase enhances interactions between Ca-ATPase polypeptide chains in cardiac sarcoplasmic reticulum membranes. Negash S; Chen LT; Bigelow DJ; Squier TC Biochemistry; 1996 Sep; 35(35):11247-59. PubMed ID: 8784178 [TBL] [Abstract][Full Text] [Related]
20. Formation of ADP-sensitive phosphorylated intermediate in the electric eel Na, K-ATPase preparation. Yoda A; Yoda S Mol Pharmacol; 1982 Nov; 22(3):693-9. PubMed ID: 6296660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]