BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 15066001)

  • 1. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract.
    Berthoud HR; Blackshaw LA; Brookes SJ; Grundy D
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():28-33. PubMed ID: 15066001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topographic inventories of vagal afferents in gastrointestinal muscle.
    Wang FB; Powley TL
    J Comp Neurol; 2000 Jun; 421(3):302-24. PubMed ID: 10813789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signalling the state of the digestive tract.
    Grundy D
    Auton Neurosci; 2006 Apr; 125(1-2):76-80. PubMed ID: 16473562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of functional intramuscular rectal mechanoreceptors in aganglionic rectal smooth muscle from piebald lethal mice.
    Spencer NJ; Kerrin A; Zagorodnyuk VP; Hennig GW; Muto M; Brookes SJ; McDonnell O
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G855-67. PubMed ID: 18218672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Afferent innervation of gastrointestinal tract smooth muscle by the hepatic branch of the vagus.
    Phillips RJ; Baronowsky EA; Powley TL
    J Comp Neurol; 1997 Jul; 384(2):248-70. PubMed ID: 9215721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract.
    Castelucci P; Robbins HL; Furness JB
    Cell Tissue Res; 2003 May; 312(2):167-74. PubMed ID: 12690440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationship of sensory endings in the gut and bladder.
    Zagorodnyuk VP; Brookes SJ; Spencer NJ
    Auton Neurosci; 2010 Feb; 153(1-2):3-11. PubMed ID: 19682956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory transmission in the gastrointestinal tract.
    Blackshaw LA; Brookes SJ; Grundy D; Schemann M
    Neurogastroenterol Motil; 2007 Jan; 19(1 Suppl):1-19. PubMed ID: 17280582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents.
    Page AJ; Slattery JA; Milte C; Laker R; O'Donnell T; Dorian C; Brierley SM; Blackshaw LA
    Am J Physiol Gastrointest Liver Physiol; 2007 May; 292(5):G1376-84. PubMed ID: 17290011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Speculations on the structure/function relationship for vagal and splanchnic afferent endings supplying the gastrointestinal tract.
    Grundy D
    J Auton Nerv Syst; 1988 Apr; 22(3):175-80. PubMed ID: 3047201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the vanilloid receptor (VR1) in the gastrointestinal tract.
    Ward SM; Bayguinov J; Won KJ; Grundy D; Berthoud HR
    J Comp Neurol; 2003 Oct; 465(1):121-35. PubMed ID: 12926020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraganglionic laminar endings are mechano-transduction sites of vagal tension receptors in the guinea-pig stomach.
    Zagorodnyuk VP; Chen BN; Brookes SJ
    J Physiol; 2001 Jul; 534(Pt 1):255-68. PubMed ID: 11433006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution and structure of vagal afferent intraganglionic laminar endings (IGLEs) in the rat gastrointestinal tract.
    Berthoud HR; Patterson LM; Neumann F; Neuhuber WL
    Anat Embryol (Berl); 1997 Feb; 195(2):183-91. PubMed ID: 9045988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musings on the wanderer: what's new in our understanding of vago-vagal reflexes? I. Morphology and topography of vagal afferents innervating the GI tract.
    Powley TL; Phillips RJ
    Am J Physiol Gastrointest Liver Physiol; 2002 Dec; 283(6):G1217-25. PubMed ID: 12388183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional and chemical anatomy of the afferent vagal system.
    Berthoud HR; Neuhuber WL
    Auton Neurosci; 2000 Dec; 85(1-3):1-17. PubMed ID: 11189015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of 5-hydroxytryptamine receptors on intestinal afferents in the regulation of visceral sensitivity.
    Greenwood-van Meerveld B
    Neurogastroenterol Motil; 2007 Aug; 19 Suppl 2():13-8. PubMed ID: 17620083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity.
    Ekblad E; Bauer AJ
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():123-8. PubMed ID: 15066017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake.
    Fox EA
    Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrinsic primary afferent signalling in the gut.
    Brookes SJ; Spencer NJ; Costa M; Zagorodnyuk VP
    Nat Rev Gastroenterol Hepatol; 2013 May; 10(5):286-96. PubMed ID: 23438947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vagal intraganglionic laminar endings and intramuscular arrays mature at different rates in pre-weanling rat stomach.
    Swithers SE; Baronowsky E; Powley TL
    Auton Neurosci; 2002 Nov; 102(1-2):13-9. PubMed ID: 12492131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.