These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
530 related articles for article (PubMed ID: 15066119)
1. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Yoshida H; Yamamoto H; Uchiumi T; Wada A Genes Cells; 2004 Apr; 9(4):271-8. PubMed ID: 15066119 [TBL] [Abstract][Full Text] [Related]
2. Ribosome binding proteins YhbH and YfiA have opposite functions during 100S formation in the stationary phase of Escherichia coli. Ueta M; Yoshida H; Wada C; Baba T; Mori H; Wada A Genes Cells; 2005 Dec; 10(12):1103-12. PubMed ID: 16324148 [TBL] [Abstract][Full Text] [Related]
3. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase. Yoshida H; Ueta M; Maki Y; Sakai A; Wada A Genes Cells; 2009 Feb; 14(2):271-80. PubMed ID: 19170772 [TBL] [Abstract][Full Text] [Related]
4. Ribosome modulation factor: stationary growth phase-specific inhibitor of ribosome functions from Escherichia coli. Wada A; Igarashi K; Yoshimura S; Aimoto S; Ishihama A Biochem Biophys Res Commun; 1995 Sep; 214(2):410-7. PubMed ID: 7677746 [TBL] [Abstract][Full Text] [Related]
5. Role of HPF (hibernation promoting factor) in translational activity in Escherichia coli. Ueta M; Ohniwa RL; Yoshida H; Maki Y; Wada C; Wada A J Biochem; 2008 Mar; 143(3):425-33. PubMed ID: 18174192 [TBL] [Abstract][Full Text] [Related]
6. The ribosome modulation factor (RMF) binding site on the 100S ribosome of Escherichia coli. Yoshida H; Maki Y; Kato H; Fujisawa H; Izutsu K; Wada C; Wada A J Biochem; 2002 Dec; 132(6):983-9. PubMed ID: 12473202 [TBL] [Abstract][Full Text] [Related]
7. The 100S ribosome: ribosomal hibernation induced by stress. Yoshida H; Wada A Wiley Interdiscip Rev RNA; 2014; 5(5):723-32. PubMed ID: 24944100 [TBL] [Abstract][Full Text] [Related]
8. Formation of 100S ribosomes in Staphylococcus aureus by the hibernation promoting factor homolog SaHPF. Ueta M; Wada C; Wada A Genes Cells; 2010 Jan; 15(1):43-58. PubMed ID: 20015224 [TBL] [Abstract][Full Text] [Related]
9. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. Rodriguez-Fonseca C; Amils R; Garrett RA J Mol Biol; 1995 Mar; 247(2):224-35. PubMed ID: 7707371 [TBL] [Abstract][Full Text] [Related]
10. Conservation of two distinct types of 100S ribosome in bacteria. Ueta M; Wada C; Daifuku T; Sako Y; Bessho Y; Kitamura A; Ohniwa RL; Morikawa K; Yoshida H; Kato T; Miyata T; Namba K; Wada A Genes Cells; 2013 Jul; 18(7):554-74. PubMed ID: 23663662 [TBL] [Abstract][Full Text] [Related]
11. Structure of a hibernating 100S ribosome reveals an inactive conformation of the ribosomal protein S1. Beckert B; Turk M; Czech A; Berninghausen O; Beckmann R; Ignatova Z; Plitzko JM; Wilson DN Nat Microbiol; 2018 Oct; 3(10):1115-1121. PubMed ID: 30177741 [TBL] [Abstract][Full Text] [Related]
12. Ribosome modulation factor protects Escherichia coli during heat stress, but this may not be dependent on ribosome dimerisation. Niven GW Arch Microbiol; 2004 Sep; 182(1):60-6. PubMed ID: 15278243 [TBL] [Abstract][Full Text] [Related]
13. The activity of ribosome modulation factor during growth of Escherichia coli under acidic conditions. el-Sharoud WM; Niven GW Arch Microbiol; 2005 Oct; 184(1):18-24. PubMed ID: 16088400 [TBL] [Abstract][Full Text] [Related]
14. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Polacek N; Gaynor M; Yassin A; Mankin AS Nature; 2001 May; 411(6836):498-501. PubMed ID: 11373685 [TBL] [Abstract][Full Text] [Related]
15. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. Green R; Samaha RR; Noller HF J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969 [TBL] [Abstract][Full Text] [Related]
16. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide. Cruz-Vera LR; Gong M; Yanofsky C Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360 [TBL] [Abstract][Full Text] [Related]
17. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Samaha RR; Green R; Noller HF Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F; Zarivach R; Harms J; Bashan A; Tocilj A; Albrecht R; Yonath A; Franceschi F Nature; 2001 Oct; 413(6858):814-21. PubMed ID: 11677599 [TBL] [Abstract][Full Text] [Related]
20. Structure of the 100S ribosome in the hibernation stage revealed by electron cryomicroscopy. Kato T; Yoshida H; Miyata T; Maki Y; Wada A; Namba K Structure; 2010 Jun; 18(6):719-24. PubMed ID: 20541509 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]