These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 15066169)

  • 1. Chaperone activity of cytosolic small heat shock proteins from wheat.
    Basha E; Lee GJ; Demeler B; Vierling E
    Eur J Biochem; 2004 Apr; 271(8):1426-36. PubMed ID: 15066169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity.
    Basha E; Friedrich KL; Vierling E
    J Biol Chem; 2006 Dec; 281(52):39943-52. PubMed ID: 17090542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into small heat shock protein and substrate structure during chaperone action derived from hydrogen/deuterium exchange and mass spectrometry.
    Cheng G; Basha E; Wysocki VH; Vierling E
    J Biol Chem; 2008 Sep; 283(39):26634-42. PubMed ID: 18621732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wrapping the alpha-crystallin domain fold in a chaperone assembly.
    Stamler R; Kappé G; Boelens W; Slingsby C
    J Mol Biol; 2005 Oct; 353(1):68-79. PubMed ID: 16165157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaperone activity of human small heat shock protein-GST fusion proteins.
    Arbach H; Butler C; McMenimen KA
    Cell Stress Chaperones; 2017 Jul; 22(4):503-515. PubMed ID: 28130664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate binding site flexibility of the small heat shock protein molecular chaperones.
    Jaya N; Garcia V; Vierling E
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15604-9. PubMed ID: 19717454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular chaperone function of the Rana catesbeiana small heat shock protein, hsp30.
    Kaldis A; Atkinson BG; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Oct; 139(2):175-82. PubMed ID: 15528166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state.
    Lee GJ; Roseman AM; Saibil HR; Vierling E
    EMBO J; 1997 Feb; 16(3):659-71. PubMed ID: 9034347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and assembly of a eukaryotic small heat shock protein.
    van Montfort RL; Basha E; Friedrich KL; Slingsby C; Vierling E
    Nat Struct Biol; 2001 Dec; 8(12):1025-30. PubMed ID: 11702068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins.
    Lee GJ; Vierling E
    Methods Enzymol; 1998; 290():350-65. PubMed ID: 9534175
    [No Abstract]   [Full Text] [Related]  

  • 11. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo.
    Löw D; Brändle K; Nover L; Forreiter C
    Planta; 2000 Sep; 211(4):575-82. PubMed ID: 11030557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tobacco class I cytosolic small heat shock proteins are under transcriptional and translational regulations in expression and heterocomplex prevails under the high-temperature stress condition in vitro.
    Park SM; Kim KP; Joe MK; Lee MO; Koo HJ; Hong CB
    Plant Cell Environ; 2015 Apr; 38(4):767-76. PubMed ID: 25158805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and biophysical characterization of small heat shock proteins from sugarcane. Involvement of a specific region located at the N-terminus with substrate specificity.
    Tiroli AO; Ramos CH
    Int J Biochem Cell Biol; 2007; 39(4):818-31. PubMed ID: 17336576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural model of dodecameric heat-shock protein Hsp21: Flexible N-terminal arms interact with client proteins while C-terminal tails maintain the dodecamer and chaperone activity.
    Rutsdottir G; Härmark J; Weide Y; Hebert H; Rasmussen MI; Wernersson S; Respondek M; Akke M; Højrup P; Koeck PJB; Söderberg CAG; Emanuelsson C
    J Biol Chem; 2017 May; 292(19):8103-8121. PubMed ID: 28325834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. It takes a dimer to tango: Oligomeric small heat shock proteins dissociate to capture substrate.
    Santhanagopalan I; Degiacomi MT; Shepherd DA; Hochberg GKA; Benesch JLP; Vierling E
    J Biol Chem; 2018 Dec; 293(51):19511-19521. PubMed ID: 30348902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP.
    Smýkal P; Masín J; Hrdý I; Konopásek I; Zárský V
    Plant J; 2000 Sep; 23(6):703-13. PubMed ID: 10998182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chaperone function and mechanism of small heat-shock proteins.
    Fu X
    Acta Biochim Biophys Sin (Shanghai); 2014 May; 46(5):347-56. PubMed ID: 24449783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol.
    Basha E; Jones C; Wysocki V; Vierling E
    J Biol Chem; 2010 Apr; 285(15):11489-97. PubMed ID: 20145254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization.
    Haslbeck M; Ignatiou A; Saibil H; Helmich S; Frenzl E; Stromer T; Buchner J
    J Mol Biol; 2004 Oct; 343(2):445-55. PubMed ID: 15451672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An unusual dimeric small heat shock protein provides insight into the mechanism of this class of chaperones.
    Basha E; Jones C; Blackwell AE; Cheng G; Waters ER; Samsel KA; Siddique M; Pett V; Wysocki V; Vierling E
    J Mol Biol; 2013 May; 425(10):1683-96. PubMed ID: 23416558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.