These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 15066765)
1. Site-specific and reversible anchoring of active proteins onto cellulose using a cellulosome-like complex. Eklund M; Sandström K; Teeri TT; Nygren PA J Biotechnol; 2004 Apr; 109(3):277-86. PubMed ID: 15066765 [TBL] [Abstract][Full Text] [Related]
2. Anti-idiotypic protein domains selected from protein A-based affibody libraries. Eklund M; Axelsson L; Uhlén M; Nygren PA Proteins; 2002 Aug; 48(3):454-62. PubMed ID: 12112671 [TBL] [Abstract][Full Text] [Related]
3. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei. Thongekkaew J; Ikeda H; Iefuji H Biochem Biophys Res Commun; 2012 Mar; 420(1):183-7. PubMed ID: 22405828 [TBL] [Abstract][Full Text] [Related]
4. Molecular engineering of the cellulosome complex for affinity and bioenergy applications. Nordon RE; Craig SJ; Foong FC Biotechnol Lett; 2009 Apr; 31(4):465-76. PubMed ID: 19116695 [TBL] [Abstract][Full Text] [Related]
6. Small binding proteins selected from a combinatorial repertoire of knottins displayed on phage. Smith GP; Patel SU; Windass JD; Thornton JM; Winter G; Griffiths AD J Mol Biol; 1998 Mar; 277(2):317-32. PubMed ID: 9514763 [TBL] [Abstract][Full Text] [Related]
7. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi. Ruiu L; Roque AC; Taipa MA; Lowe CR J Mol Recognit; 2006; 19(4):372-8. PubMed ID: 16779873 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for molecular recognition in an affibody:affibody complex. Lendel C; Dogan J; Härd T J Mol Biol; 2006 Jun; 359(5):1293-304. PubMed ID: 16750222 [TBL] [Abstract][Full Text] [Related]
9. Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Ialpha crystal model. Yui T; Shiiba H; Tsutsumi Y; Hayashi S; Miyata T; Hirata F J Phys Chem B; 2010 Jan; 114(1):49-58. PubMed ID: 19928978 [TBL] [Abstract][Full Text] [Related]
10. Synthetic affinity ligands as a novel tool to improve protein stability. Sousa IT; Ruiu L; Lowe CR; Taipa MA J Mol Recognit; 2009; 22(2):83-90. PubMed ID: 18654989 [TBL] [Abstract][Full Text] [Related]
11. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction. Karpol A; Kantorovich L; Demishtein A; Barak Y; Morag E; Lamed R; Bayer EA J Mol Recognit; 2009; 22(2):91-8. PubMed ID: 18979459 [TBL] [Abstract][Full Text] [Related]
12. Selection and characterization of Affibody ligands binding to Alzheimer amyloid beta peptides. Grönwall C; Jonsson A; Lindström S; Gunneriusson E; Ståhl S; Herne N J Biotechnol; 2007 Jan; 128(1):162-83. PubMed ID: 17088007 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of cellulase activity by clones selected from the combinatorial library of the cellulose-binding domain by cell surface engineering. Fukuda T; Ishikawa T; Ogawa M; Shiraga S; Kato M; Suye S; Ueda M Biotechnol Prog; 2006; 22(4):933-8. PubMed ID: 16889365 [TBL] [Abstract][Full Text] [Related]
15. Calmodulin-mediated reversible immobilization of enzymes. Daunert S; Bachas LG; Schauer-Vukasinovic V; Gregory KJ; Schrift G; Deo S Colloids Surf B Biointerfaces; 2007 Jul; 58(1):20-7. PubMed ID: 17276043 [TBL] [Abstract][Full Text] [Related]
16. Selection and characterization of Affibody ligands to the transcription factor c-Jun. Lundberg E; Brismar H; Gräslund T Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):17-27. PubMed ID: 18260830 [TBL] [Abstract][Full Text] [Related]
17. Expression, refolding and indirect immobilization of horseradish peroxidase (HRP) to cellulose via a phage-selected peptide and cellulose-binding domain (CBD). Levy I; Shoseyov O J Pept Sci; 2001 Jan; 7(1):50-7. PubMed ID: 11245205 [TBL] [Abstract][Full Text] [Related]
18. Processive action of cellobiohydrolase Cel7A from Trichoderma reesei is revealed as 'burst' kinetics on fluorescent polymeric model substrates. Kipper K; Väljamäe P; Johansson G Biochem J; 2005 Jan; 385(Pt 2):527-35. PubMed ID: 15362979 [TBL] [Abstract][Full Text] [Related]
19. Enhanced production of cellobiohydrolases in Trichoderma reesei and evaluation of the new preparations in biofinishing of cotton. Miettinen-Oinonen A; Paloheimo M; Lantto R; Suominen P J Biotechnol; 2005 Mar; 116(3):305-17. PubMed ID: 15707691 [TBL] [Abstract][Full Text] [Related]
20. Construction of a novel synergistic system for production and recovery of secreted recombinant proteins by the cell surface engineering. Shibasaki S; Kawabata A; Ishii J; Yagi S; Kadonosono T; Kato M; Fukuda N; Kondo A; Ueda M Appl Microbiol Biotechnol; 2007 Jun; 75(4):821-8. PubMed ID: 17345082 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]