These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 15066781)
1. Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Van der Meulen R; Avonts L; De Vuyst L Appl Environ Microbiol; 2004 Apr; 70(4):1923-30. PubMed ID: 15066781 [TBL] [Abstract][Full Text] [Related]
2. In vitro kinetic analysis of oligofructose consumption by Bacteroides and Bifidobacterium spp. indicates different degradation mechanisms. Van der Meulen R; Makras L; Verbrugghe K; Adriany T; De Vuyst L Appl Environ Microbiol; 2006 Feb; 72(2):1006-12. PubMed ID: 16461642 [TBL] [Abstract][Full Text] [Related]
3. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Falony G; Lazidou K; Verschaeren A; Weckx S; Maes D; De Vuyst L Appl Environ Microbiol; 2009 Jan; 75(2):454-61. PubMed ID: 19011052 [TBL] [Abstract][Full Text] [Related]
4. Coculture fermentations of Bifidobacterium species and Bacteroides thetaiotaomicron reveal a mechanistic insight into the prebiotic effect of inulin-type fructans. Falony G; Calmeyn T; Leroy F; De Vuyst L Appl Environ Microbiol; 2009 Apr; 75(8):2312-9. PubMed ID: 19251883 [TBL] [Abstract][Full Text] [Related]
5. Bifidobacterial inulin-type fructan degradation capacity determines cross-feeding interactions between bifidobacteria and Faecalibacterium prausnitzii. Moens F; Weckx S; De Vuyst L Int J Food Microbiol; 2016 Aug; 231():76-85. PubMed ID: 27233082 [TBL] [Abstract][Full Text] [Related]
6. Lactobacillus paracasei subsp. paracasei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Makras L; Van Acker G; De Vuyst L Appl Environ Microbiol; 2005 Nov; 71(11):6531-7. PubMed ID: 16269678 [TBL] [Abstract][Full Text] [Related]
7. Kinetics and metabolism of Bifidobacterium adolescentis MB 239 growing on glucose, galactose, lactose, and galactooligosaccharides. Amaretti A; Bernardi T; Tamburini E; Zanoni S; Lomma M; Matteuzzi D; Rossi M Appl Environ Microbiol; 2007 Jun; 73(11):3637-44. PubMed ID: 17434997 [TBL] [Abstract][Full Text] [Related]
8. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Falony G; Vlachou A; Verbrugghe K; De Vuyst L Appl Environ Microbiol; 2006 Dec; 72(12):7835-41. PubMed ID: 17056678 [TBL] [Abstract][Full Text] [Related]
9. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants. Thum C; Roy NC; McNabb WC; Otter DE; Cookson AL Gut Microbes; 2015; 6(6):352-63. PubMed ID: 26587678 [TBL] [Abstract][Full Text] [Related]
10. Summer Meeting 2013: growth and physiology of bifidobacteria. De Vuyst L; Moens F; Selak M; Rivière A; Leroy F J Appl Microbiol; 2014 Mar; 116(3):477-91. PubMed ID: 24314205 [TBL] [Abstract][Full Text] [Related]
11. In vitro fermentation profiles, gas production rates, and microbiota modulation as affected by certain fructans, galactooligosaccharides, and polydextrose. Hernot DC; Boileau TW; Bauer LL; Middelbos IS; Murphy MR; Swanson KS; Fahey GC J Agric Food Chem; 2009 Feb; 57(4):1354-61. PubMed ID: 19199596 [TBL] [Abstract][Full Text] [Related]
12. Lactate- and acetate-based cross-feeding interactions between selected strains of lactobacilli, bifidobacteria and colon bacteria in the presence of inulin-type fructans. Moens F; Verce M; De Vuyst L Int J Food Microbiol; 2017 Jan; 241():225-236. PubMed ID: 27810444 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of Bifidobacterium longum ATCC 15707 fermentations: effect of the dilution rate and carbon source. Shene C; Mardones M; Zamora P; Bravo S Appl Microbiol Biotechnol; 2005 Jun; 67(5):623-30. PubMed ID: 15747118 [TBL] [Abstract][Full Text] [Related]
14. Metabolization of beta-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. Marx SP; Winkler S; Hartmeier W FEMS Microbiol Lett; 2000 Jan; 182(1):163-9. PubMed ID: 10612749 [TBL] [Abstract][Full Text] [Related]
15. In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate-producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Falony G; Verschaeren A; De Bruycker F; De Preter V; Verbeke K; Leroy F; De Vuyst L Appl Environ Microbiol; 2009 Sep; 75(18):5884-92. PubMed ID: 19633122 [TBL] [Abstract][Full Text] [Related]
17. Kinetic analysis of bifidobacterial metabolism reveals a minor role for succinic acid in the regeneration of NAD+ through its growth-associated production. Van der Meulen R; Adriany T; Verbrugghe K; De Vuyst L Appl Environ Microbiol; 2006 Aug; 72(8):5204-10. PubMed ID: 16885266 [TBL] [Abstract][Full Text] [Related]
18. Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization. Velázquez-Martínez JR; González-Cervantes RM; Hernández-Gallegos MA; Mendiola RC; Aparicio AR; Ocampo ML Molecules; 2014 Aug; 19(8):12660-75. PubMed ID: 25153877 [TBL] [Abstract][Full Text] [Related]
19. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. van de Wiele T; Boon N; Possemiers S; Jacobs H; Verstraete W J Appl Microbiol; 2007 Feb; 102(2):452-60. PubMed ID: 17241351 [TBL] [Abstract][Full Text] [Related]
20. Inulin-type fructan degradation capacity of Clostridium cluster IV and XIVa butyrate-producing colon bacteria and their associated metabolic outcomes. Moens F; De Vuyst L Benef Microbes; 2017 May; 8(3):473-490. PubMed ID: 28548573 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]