These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 15066785)

  • 1. Prolonged maltose-limited cultivation of Saccharomyces cerevisiae selects for cells with improved maltose affinity and hypersensitivity.
    Jansen ML; Daran-Lapujade P; de Winde JH; Piper MD; Pronk JT
    Appl Environ Microbiol; 2004 Apr; 70(4):1956-63. PubMed ID: 15066785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-accelerated death of Saccharomyces cerevisiae CBS 8066 under maltose stress.
    Postma E; Verduyn C; Kuiper A; Scheffers WA; van Dijken JP
    Yeast; 1990; 6(2):149-58. PubMed ID: 2183522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway.
    Wanke V; Vavassori M; Thevelein JM; Tortora P; Vanoni M
    FEBS Lett; 1997 Feb; 402(2-3):251-5. PubMed ID: 9037205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.
    Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible loss of affinity induced by glucose in the maltose-H+ symport of Saccharomyces cerevisiae.
    Peinado JM; Loureiro-Dias MC
    Biochim Biophys Acta; 1986 Apr; 856(2):189-92. PubMed ID: 3513836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker's yeast in unsugared dough.
    Higgins VJ; Braidwood M; Bell P; Bissinger P; Dawes IW; Attfield PV
    Appl Environ Microbiol; 1999 Feb; 65(2):680-5. PubMed ID: 9925600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Stambuk BU; de Araujo PS
    FEMS Yeast Res; 2001 Apr; 1(1):73-8. PubMed ID: 12702465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MAL63 codes for a positive regulator of maltose fermentation in Saccharomyces cerevisiae.
    Chang YS; Dubin RA; Perkins E; Forrest D; Michels CA; Needleman RB
    Curr Genet; 1988 Sep; 14(3):201-9. PubMed ID: 3058330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of maltose non utilizing (mnu) mutants mapping outside the MAL1 locus in Saccharomyces cerevisiae.
    Vanoni M; Goldenthal MJ
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):233-6. PubMed ID: 2037232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colorimetric determination of active alpha-glucoside transport in Saccharomyces cerevisiae.
    Hollatz C; Stambuk BU
    J Microbiol Methods; 2001 Sep; 46(3):253-9. PubMed ID: 11438190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae.
    Day RE; Rogers PJ; Dawes IW; Higgins VJ
    Appl Environ Microbiol; 2002 Nov; 68(11):5326-35. PubMed ID: 12406721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein phosphatase type-1 regulatory subunits Reg1p and Reg2p act as signal transducers in the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae.
    Jiang H; Tatchell K; Liu S; Michels CA
    Mol Gen Genet; 2000 Apr; 263(3):411-22. PubMed ID: 10821175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and kinetics of maltose transport in Saccharomyces cerevisiae: a continuous culture study.
    Weusthuis RA; Adams H; Scheffers WA; van Dijken JP
    Appl Environ Microbiol; 1993 Sep; 59(9):3102-9. PubMed ID: 8215379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hxt-carrier-mediated glucose efflux upon exposure of Saccharomyces cerevisiae to excess maltose.
    Jansen ML; De Winde JH; Pronk JT
    Appl Environ Microbiol; 2002 Sep; 68(9):4259-65. PubMed ID: 12200274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular maltose is sufficient to induce MAL gene expression in Saccharomyces cerevisiae.
    Wang X; Bali M; Medintz I; Michels CA
    Eukaryot Cell; 2002 Oct; 1(5):696-703. PubMed ID: 12455689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae.
    Henderson R; Poolman B
    Sci Rep; 2017 Oct; 7(1):14375. PubMed ID: 29084970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermentation of high concentrations of maltose by Saccharomyces cerevisiae is limited by the COMPASS methylation complex.
    Houghton-Larsen J; Brandt A
    Appl Environ Microbiol; 2006 Nov; 72(11):7176-82. PubMed ID: 16980427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations in SIN4 and RGR1 cause constitutive expression of MAL structural genes in Saccharomyces cerevisiae.
    Wang X; Michels CA
    Genetics; 2004 Oct; 168(2):747-57. PubMed ID: 15514050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hsp90 molecular chaperone complex regulates maltose induction and stability of the Saccharomyces MAL gene transcription activator Mal63p.
    Bali M; Zhang B; Morano KA; Michels CA
    J Biol Chem; 2003 Nov; 278(48):47441-8. PubMed ID: 14500708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of Mal61p in Saccharomyces cerevisiae and characterization of maltose transport in artificial membranes.
    van der Rest ME; de Vries Y; Poolman B; Konings WN
    J Bacteriol; 1995 Oct; 177(19):5440-6. PubMed ID: 7559327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.