BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15067008)

  • 1. Biochemical demonstration of the involvement of fatty acyl-CoA synthetase in fatty acid translocation across the plasma membrane.
    Schmelter T; Trigatti BL; Gerber GE; Mangroo D
    J Biol Chem; 2004 Jun; 279(23):24163-70. PubMed ID: 15067008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acid uptake in Escherichia coli: regulation by recruitment of fatty acyl-CoA synthetase to the plasma membrane.
    Mangroo D; Gerber GE
    Biochem Cell Biol; 1993; 71(1-2):51-6. PubMed ID: 8329176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization.
    O'Brien WJ; Frerman FE
    J Bacteriol; 1977 Nov; 132(2):532-40. PubMed ID: 334745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Very long-chain acyl-CoA synthetases. Human "bubblegum" represents a new family of proteins capable of activating very long-chain fatty acids.
    Steinberg SJ; Morgenthaler J; Heinzer AK; Smith KD; Watkins PA
    J Biol Chem; 2000 Nov; 275(45):35162-9. PubMed ID: 10954726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of Escherichia coli strains containing fad mutations plus a triple plasmid expression system to study the import of myristate, its activation by Saccharomyces cerevisiae acyl-CoA synthetase, and its utilization by S. cerevisiae myristoyl-CoA:protein N-myristoyltransferase.
    Knoll LJ; Gordon JI
    J Biol Chem; 1993 Feb; 268(6):4281-90. PubMed ID: 8440712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein 1.
    Hall AM; Smith AJ; Bernlohr DA
    J Biol Chem; 2003 Oct; 278(44):43008-13. PubMed ID: 12937175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for the incorporation of exogenous fatty acids into phosphatidylethanolamine in Escherichia coli.
    Rock CO; Jackowski S
    J Biol Chem; 1985 Oct; 260(23):12720-4. PubMed ID: 3900077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of fatty acids across the membrane of human erythrocyte ghosts.
    Morand O; Aigrot MS
    Biochim Biophys Acta; 1985 Jun; 835(1):68-76. PubMed ID: 4005276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional role of fatty acyl-coenzyme A synthetase in the transmembrane movement and activation of exogenous long-chain fatty acids. Amino acid residues within the ATP/AMP signature motif of Escherichia coli FadD are required for enzyme activity and fatty acid transport.
    Weimar JD; DiRusso CC; Delio R; Black PN
    J Biol Chem; 2002 Aug; 277(33):29369-76. PubMed ID: 12034706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family.
    Jiang Y; Chan CH; Cronan JE
    Biochemistry; 2006 Aug; 45(33):10008-19. PubMed ID: 16906759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of Long-Chain Fatty Acyl-CoA Synthetase Activity.
    Füllekrug J; Poppelreuther M
    Methods Mol Biol; 2016; 1376():43-53. PubMed ID: 26552674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of a fatty acyl-coenzyme A synthetase signature motif identifies seven amino acid residues that modulate fatty acid substrate specificity.
    Black PN; Zhang Q; Weimar JD; DiRusso CC
    J Biol Chem; 1997 Feb; 272(8):4896-903. PubMed ID: 9030548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular Utilization.
    Faergeman NJ; Black PN; Zhao XD; Knudsen J; DiRusso CC
    J Biol Chem; 2001 Oct; 276(40):37051-9. PubMed ID: 11477098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an arachidonic acid-selective acyl-CoA synthetase from murine T lymphocytes.
    Taylor AS; Sprecher H; Russell JH
    Biochim Biophys Acta; 1985 Feb; 833(2):229-38. PubMed ID: 3918571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatty acid degradation in Caulobacter crescentus.
    O'Connell M; Henry S; Shapiro L
    J Bacteriol; 1986 Oct; 168(1):49-54. PubMed ID: 2875991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics underlying the process of long-chain fatty acid transport.
    Azizan A; Sherin D; DiRusso CC; Black PN
    Arch Biochem Biophys; 1999 May; 365(2):299-306. PubMed ID: 10328825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of Escherichia coli K-12 mutants lacking both 2-acyl-glycerophosphoethanolamine acyltransferase and acyl-acyl carrier protein synthetase activity.
    Hsu L; Jackowski S; Rock CO
    J Biol Chem; 1991 Jul; 266(21):13783-8. PubMed ID: 1649829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl-CoA synthetase activity of rat heart mitochondria. Substrate specificity with special reference to very-long-chain and isomeric fatty acids.
    Normann PT; Norseth J; Flatmark T
    Biochim Biophys Acta; 1983 Aug; 752(3):474-81. PubMed ID: 6409151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular uptake of fatty acids driven by the ER-localized acyl-CoA synthetase FATP4.
    Milger K; Herrmann T; Becker C; Gotthardt D; Zickwolf J; Ehehalt R; Watkins PA; Stremmel W; Füllekrug J
    J Cell Sci; 2006 Nov; 119(Pt 22):4678-88. PubMed ID: 17062637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.