These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 15067402)
21. Molecular cytogenetic and agronomic characterization of advanced generations of wheat x triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers. Nkongolo KK; Haley SD; Kim NS; Michael P; Fedak G; Quick JS; Peairs FB Genome; 2009 Apr; 52(4):353-60. PubMed ID: 19370091 [TBL] [Abstract][Full Text] [Related]
22. Parental and novel copies of the mitochondrial orf25 gene in the hybrid crop-plant triticale: predominant transcriptional expression of the maternal gene copy. Laser B; Mohr S; Odenbach W; Oettler G; Kück U Curr Genet; 1997 Nov; 32(5):337-47. PubMed ID: 9371885 [TBL] [Abstract][Full Text] [Related]
23. Generation and molecular marker and cytological characterization of wheat - Singh AK; Zhang P; Dong C; Li J; Singh S; Trethowan R; Sharp P Genome; 2021 Jan; 64(1):29-38. PubMed ID: 33002386 [TBL] [Abstract][Full Text] [Related]
24. Phosphorus digestibility and metabolisable energy concentrations of contemporary wheat, barley, rye and triticale genotypes fed to growing pigs. Schemmer R; Spillner C; Südekum KH Arch Anim Nutr; 2020 Dec; 74(6):429-444. PubMed ID: 32962441 [TBL] [Abstract][Full Text] [Related]
25. Cytogenetic and molecular characteristics of rye genome in octoploid triticale (× Evtushenko EV; Lipikhina YA; Stepochkin PI; Vershinin AV Comp Cytogenet; 2019; 13(4):423-434. PubMed ID: 31879548 [TBL] [Abstract][Full Text] [Related]
26. [Production of wheat-rye substitution lines and identification of chromosome composition of karyotypes using C-banding, GISH, and SSR markers]. Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Roder MS; Salina EA; Shchapova AI; Shumnyĭ VK Genetika; 2006 Jun; 42(6):793-802. PubMed ID: 16871784 [TBL] [Abstract][Full Text] [Related]
27. Addition of rye chromosome 4R to wheat increases anther length and pollen grain number. Nguyen V; Fleury D; Timmins A; Laga H; Hayden M; Mather D; Okada T Theor Appl Genet; 2015 May; 128(5):953-64. PubMed ID: 25716820 [TBL] [Abstract][Full Text] [Related]
28. Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye. Hills MJ; Hall LM; Messenger DF; Graf RJ; Beres BL; Eudes F Environ Biosafety Res; 2007; 6(4):249-57. PubMed ID: 18289500 [TBL] [Abstract][Full Text] [Related]
29. High transferability of bread wheat EST-derived SSRs to other cereals. Zhang LY; Bernard M; Leroy P; Feuillet C; Sourdille P Theor Appl Genet; 2005 Aug; 111(4):677-87. PubMed ID: 16034582 [TBL] [Abstract][Full Text] [Related]
30. [Production of wheat-rye substitution lines based on winter rye cultivars with karyotype identification by means of C-banding, GISH, and SSR markers]. Silkova OG; Dobrovol'skaia OB; Dubovets NI; Adonina IG; Kravtsova LA; Shchapova AI; Shumnyĭ VK Genetika; 2007 Aug; 43(8):1149-52. PubMed ID: 17958318 [TBL] [Abstract][Full Text] [Related]
31. In situ hybridization as a rapid means to assess meiotic pairing and detection of alien DNA transfers in interphase cells of wide crosses involving wheat and rye. Le HT; Armstrong KC Mol Gen Genet; 1991 Jan; 225(1):33-7. PubMed ID: 2000089 [TBL] [Abstract][Full Text] [Related]
32. [Molecular cytogenetic characterization of spring triticale line 131/7 carrying a rye-wheat translocation]. Divashuk MG; Krupin PIu; Solov'ev AA; Karlov GI Genetika; 2010 Feb; 46(2):211-7. PubMed ID: 20297655 [TBL] [Abstract][Full Text] [Related]
33. Optimum breeding strategies using genomic selection for hybrid breeding in wheat, maize, rye, barley, rice and triticale. Marulanda JJ; Mi X; Melchinger AE; Xu JL; Würschum T; Longin CF Theor Appl Genet; 2016 Oct; 129(10):1901-13. PubMed ID: 27389871 [TBL] [Abstract][Full Text] [Related]
34. Development of simple sequence repeat markers in rye (Secale cereale L.). Saal B; Wricke G Genome; 1999 Oct; 42(5):964-72. PubMed ID: 10584314 [TBL] [Abstract][Full Text] [Related]
35. Involvement of disperse repetitive sequences in wheat/rye genome adjustment. Tomás D; Bento M; Viegas W; Silva M Int J Mol Sci; 2012; 13(7):8549-8561. PubMed ID: 22942719 [TBL] [Abstract][Full Text] [Related]
36. [Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines]. Li J; Zhu XG; Wan HS; Wang Q; Tang ZX; Fu SL; Yang Z; Yang MY; Yang WY Yi Chuan; 2015 Jun; 37(6):590-8. PubMed ID: 26351056 [TBL] [Abstract][Full Text] [Related]
37. Genome-wide simple sequence repeat analysis and specific molecular marker development of rye. Li Z; Zhao L; Yang T; Tang J; Miao Y; Ren T BMC Genomics; 2024 Aug; 25(1):780. PubMed ID: 39134932 [TBL] [Abstract][Full Text] [Related]
38. [Effect of rye Secale cereale L. chromosomes 1R and 3R on polyembryony expression in hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and wheat T. aestivum L.-rye S. cereale L. substitution lines]. Pershina LA; Rakovtseva TS; Belova LI; Deviatkina EP; Silkova OG; Kravtsova LA; Shchapova AI Genetika; 2007 Jul; 43(7):955-62. PubMed ID: 17899814 [TBL] [Abstract][Full Text] [Related]
39. Effects of leaf properties on the counts of microbes on the leaf surfaces of wheat, rye and triticale. Tang G; Fan Y; Li X; Tian R; Tang R; Xu L; Zhang J FEMS Microbiol Ecol; 2023 Mar; 99(4):. PubMed ID: 36918203 [TBL] [Abstract][Full Text] [Related]
40. A review of triticale uses and the effect of growth environment on grain quality. McGoverin CM; Snyders F; Muller N; Botes W; Fox G; Manley M J Sci Food Agric; 2011 May; 91(7):1155-65. PubMed ID: 21433010 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]