These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 15067486)

  • 41. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies.
    Treseder KK
    Ecol Lett; 2008 Oct; 11(10):1111-20. PubMed ID: 18673384
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remediation of heavy metal-contaminated forest soil using recycled organic matter and native woody plants.
    Helmisaari HS; Salemaa M; Derome J; Kiikkilä O; Uhlig C; Nieminen TM
    J Environ Qual; 2007; 36(4):1145-53. PubMed ID: 17596623
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in soil characteristics and plant species composition along a moisture gradient in a Mediterranean pasture.
    Tzialla CE; Veresoglou DS; Papakosta D; Mamolos AP
    J Environ Manage; 2006 Jul; 80(1):90-8. PubMed ID: 16338059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in microbial biomass parameters of a heavy metal-contaminated calcareous soil during a field remediation experiment.
    Clemente R; de la Fuente C; Moral R; Bernal MP
    J Environ Qual; 2007; 36(4):1137-44. PubMed ID: 17596622
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology.
    Tyree MC; Seiler JR; Maier CA; Johnsen KH
    Tree Physiol; 2009 Sep; 29(9):1117-31. PubMed ID: 19608598
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation of fine roots to annual fertilization and irrigation in a 13-year-old Pinus pinaster stand.
    Bakker MR; Jolicoeur E; Trichet P; Augusto L; Plassard C; Guinberteau J; Loustau D
    Tree Physiol; 2009 Feb; 29(2):229-38. PubMed ID: 19203948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of heavy metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland.
    Derome J; Lindroos AJ
    Environ Pollut; 1998; 99(2):225-32. PubMed ID: 15093315
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nutrient retranslocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient.
    Nieminen T; Helmisaari HS
    Tree Physiol; 1996 Oct; 16(10):825-31. PubMed ID: 14871672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of the Microbial Communities in Coniferous Forest Soils in Relation to Site Fertility and Stand Development Stage.
    Pennanen T; Liski J; Bååth E; Kitunen V; Uotila J; Westman CJ; Fritze H
    Microb Ecol; 1999 Aug; 38(2):168-179. PubMed ID: 10441709
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decomposition of coniferous forest litter along a heavy metal pollution gradient, south-west Finland.
    McEnroe NA; Helmisaari HS
    Environ Pollut; 2001; 113(1):11-8. PubMed ID: 11351757
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vegetation Composition Determines Microbial Activities in a Boreal Forest Soil.
    Ohtonen R; Väre H
    Microb Ecol; 1998 Nov; 36(3):328-335. PubMed ID: 9852512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interactions between precipitation and Scots pine canopies along a heavy-metal pollution gradient.
    Nieminen TM; Derome J; Helmisaari HS
    Environ Pollut; 1999 Jul; 106(1):129-37. PubMed ID: 15093068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfungi and microbial activity along a heavy metal gradient.
    Nordgren A; Bååth E; Söderström B
    Appl Environ Microbiol; 1983 Jun; 45(6):1829-37. PubMed ID: 16346316
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Distribution of elements along the length of Scots pine needles in a heavily polluted and a control environment.
    Giertych MJ; De Temmerman LO; Rachwal L
    Tree Physiol; 1997 Nov; 17(11):697-703. PubMed ID: 14759894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland.
    Vanninen P; Mäkelä A
    Tree Physiol; 1999 Oct; 19(12):823-830. PubMed ID: 10562399
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible transition between active and dormant microbial states in soil.
    Stenström J; Svensson K; Johansson M
    FEMS Microbiol Ecol; 2001 Jul; 36(2-3):93-104. PubMed ID: 11451513
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial biomass and ATP in smelter-polluted forest humus.
    Bååth E; Arnebrant K; Nordgren A
    Bull Environ Contam Toxicol; 1991 Aug; 47(2):278-82. PubMed ID: 1912705
    [No Abstract]   [Full Text] [Related]  

  • 58. Biological activity in soil from forest stands in Central Sweden, as related to site properties.
    Nohrstedt HÖ
    Microb Ecol; 1985 Sep; 11(3):259-66. PubMed ID: 24221365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined use of open-air and indoor fumigation systems to study effects of SO2 on leaching processes in Scots pine litter.
    Wookey PA; Ineson P
    Environ Pollut; 1991; 74(4):325-43. PubMed ID: 15092059
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Between-species differences in heavy metal levels in four pine diprionids (hymenoptera) along an air pollutant gradient.
    Heliövaara K; Väisänen R
    Environ Pollut; 1989; 62(2-3):253-61. PubMed ID: 15092349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.