These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 15067678)

  • 1. Even-tempered Slater-type orbitals revisited: from hydrogen to krypton.
    Chong DP; van Lenthe E; Van Gisbergen S; Baerends EJ
    J Comput Chem; 2004 Jun; 25(8):1030-6. PubMed ID: 15067678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-functional generalized-gradient and hybrid calculations of electromagnetic properties using Slater basis sets.
    Watson MA; Handy NC; Cohen AJ; Helgaker T
    J Chem Phys; 2004 Apr; 120(16):7252-61. PubMed ID: 15267634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of a DFT-based method for the calculation of the Zeeman g-tensor in periodic systems with the use of numerical and Slater-type atomic orbitals.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2009 Feb; 113(7):1327-34. PubMed ID: 19173640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of selected molecular orbitals in group basis sets.
    Ferenczy GG; Adams WH
    J Chem Phys; 2009 Apr; 130(13):134108. PubMed ID: 19355718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the maximum accuracy of the pseudopotential density functional method with localized atomic orbitals versus plane-wave basis sets.
    Gusso M
    J Chem Phys; 2008 Jan; 128(4):044102. PubMed ID: 18247925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.
    Aquilante F; Gagliardi L; Pedersen TB; Lindh R
    J Chem Phys; 2009 Apr; 130(15):154107. PubMed ID: 19388736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unified treatment of multicenter integrals of integer and noninteger u Yukawa-type screened Coulomb type potentials and their derivatives over Slater orbitals.
    Guseinov II
    J Chem Phys; 2004 May; 120(20):9454-7. PubMed ID: 15267956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implementation of a density functional theory-based method for the calculation of the hyperfine A-tensor in periodic systems with the use of numerical and Slater type atomic orbitals: application to paramagnetic defects.
    Kadantsev ES; Ziegler T
    J Phys Chem A; 2008 May; 112(19):4521-6. PubMed ID: 18412322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory.
    Ilias M; Saue T; Enevoldsen T; Jensen HJ
    J Chem Phys; 2009 Sep; 131(12):124119. PubMed ID: 19791864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital-orthogonality constraints and basis-set optimization.
    Penotti FE
    J Comput Chem; 2006 Apr; 27(6):762-72. PubMed ID: 16526036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-order Møller-Plesset theory with linear R12 terms (MP2-R12) revisited: auxiliary basis set method and massively parallel implementation.
    Valeev EF; Janssen CL
    J Chem Phys; 2004 Jul; 121(3):1214-27. PubMed ID: 15260663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals.
    Lu WC; Wang CZ; Schmidt MW; Bytautas L; Ho KM; Ruedenberg K
    J Chem Phys; 2004 Feb; 120(6):2629-37. PubMed ID: 15268406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear augmented Slater-type orbital method for free standing clusters.
    Kang KS; Davenport JW; Glimm J; Keyes DE; McGuigan M
    J Comput Chem; 2009 Jun; 30(8):1185-93. PubMed ID: 18988248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Jastrow-Slater wave functions for ground and excited states: application to the lowest states of ethene.
    Schautz F; Filippi C
    J Chem Phys; 2004 Jun; 120(23):10931-41. PubMed ID: 15268123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relation between exchange-only optimized potential and Kohn-Sham methods with finite basis sets, and effect of linearly dependent products of orbital basis functions.
    Görling A; Hesselmann A; Jones M; Levy M
    J Chem Phys; 2008 Mar; 128(10):104104. PubMed ID: 18345874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parallel, linear-scaling building-block and embedding method based on localized orbitals and orbital-specific basis sets.
    Seijo L; Barandiarán Z
    J Chem Phys; 2004 Oct; 121(14):6698-709. PubMed ID: 15473725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. General orbital invariant MP2-F12 theory.
    Werner HJ; Adler TB; Manby FR
    J Chem Phys; 2007 Apr; 126(16):164102. PubMed ID: 17477584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sparse algorithm for the evaluation of the local energy in quantum Monte Carlo.
    Aspuru-Guzik A; Salomón-Ferrer R; Austin B; Lester WA
    J Comput Chem; 2005 May; 26(7):708-15. PubMed ID: 15761862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the r
    Gasevic T; Stückrath JB; Grimme S; Bursch M
    J Phys Chem A; 2022 Jun; 126(23):3826-3838. PubMed ID: 35654439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.