These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 15067690)
1. Implementation of an ADME enabling selection and visualization tool for drug discovery. Stoner CL; Gifford E; Stankovic C; Lepsy CS; Brodfuehrer J; Prasad JV; Surendran N J Pharm Sci; 2004 May; 93(5):1131-41. PubMed ID: 15067690 [TBL] [Abstract][Full Text] [Related]
2. Utilization of in vitro Caco-2 permeability and liver microsomal half-life screens in discovering BMS-488043, a novel HIV-1 attachment inhibitor with improved pharmacokinetic properties. Yang Z; Zadjura LM; Marino AM; D'Arienzo CJ; Malinowski J; Gesenberg C; Lin PF; Colonno RJ; Wang T; Kadow JF; Meanwell NA; Hansel SB J Pharm Sci; 2010 Apr; 99(4):2135-52. PubMed ID: 19780144 [TBL] [Abstract][Full Text] [Related]
3. In silico pKa prediction and ADME profiling. Cruciani G; Milletti F; Storchi L; Sforna G; Goracci L Chem Biodivers; 2009 Nov; 6(11):1812-21. PubMed ID: 19937818 [TBL] [Abstract][Full Text] [Related]
4. Integrated oral bioavailability projection using in vitro screening data as a selection tool in drug discovery. Stoner CL; Cleton A; Johnson K; Oh DM; Hallak H; Brodfuehrer J; Surendran N; Han HK Int J Pharm; 2004 Jan; 269(1):241-9. PubMed ID: 14698595 [TBL] [Abstract][Full Text] [Related]
5. Applications of high-throughput ADME in drug discovery. Kassel DB Curr Opin Chem Biol; 2004 Jun; 8(3):339-45. PubMed ID: 15183334 [TBL] [Abstract][Full Text] [Related]
6. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim. Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464 [TBL] [Abstract][Full Text] [Related]
7. Drug-like property concepts in pharmaceutical design. Di L; Kerns EH; Carter GT Curr Pharm Des; 2009; 15(19):2184-94. PubMed ID: 19601822 [TBL] [Abstract][Full Text] [Related]
8. Absorption classification of oral drugs based on molecular surface properties. Bergström CA; Strafford M; Lazorova L; Avdeef A; Luthman K; Artursson P J Med Chem; 2003 Feb; 46(4):558-70. PubMed ID: 12570377 [TBL] [Abstract][Full Text] [Related]
9. Using open source computational tools for predicting human metabolic stability and additional absorption, distribution, metabolism, excretion, and toxicity properties. Gupta RR; Gifford EM; Liston T; Waller CL; Hohman M; Bunin BA; Ekins S Drug Metab Dispos; 2010 Nov; 38(11):2083-90. PubMed ID: 20693417 [TBL] [Abstract][Full Text] [Related]
10. Improving early drug discovery through ADME modelling: an overview. Wishart DS Drugs R D; 2007; 8(6):349-62. PubMed ID: 17963426 [TBL] [Abstract][Full Text] [Related]
11. ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties. Hou TJ; Zhang W; Xia K; Qiao XB; Xu XJ J Chem Inf Comput Sci; 2004; 44(5):1585-600. PubMed ID: 15446816 [TBL] [Abstract][Full Text] [Related]
12. High-throughput and in silico techniques in drug metabolism and pharmacokinetics. van de Waterbeemd H Curr Opin Drug Discov Devel; 2002 Jan; 5(1):33-43. PubMed ID: 11865671 [TBL] [Abstract][Full Text] [Related]
13. Can the Internet help to meet the challenges in ADME and e-ADME? Van de Waterbeemd H; De Groot M SAR QSAR Environ Res; 2002; 13(3-4):391-401. PubMed ID: 12184380 [TBL] [Abstract][Full Text] [Related]
14. In silico prediction of ADME properties: are we making progress? Beresford AP; Segall M; Tarbit MH Curr Opin Drug Discov Devel; 2004 Jan; 7(1):36-42. PubMed ID: 14982146 [TBL] [Abstract][Full Text] [Related]
15. Validation of a high-throughput absorption, distribution, metabolism, and excretion (ADME) system and results for 60 literature compounds. Yan Z; Lu C; Wu JT; Elvebak L; Brockman A Rapid Commun Mass Spectrom; 2005; 19(9):1191-9. PubMed ID: 15818724 [TBL] [Abstract][Full Text] [Related]
16. Drug discovery in the kinase inhibitory field using the Nested Chemical Library technology. Kéri G; Székelyhidi Z; Bánhegyi P; Varga Z; Hegymegi-Barakonyi B; Szántai-Kis C; Hafenbradl D; Klebl B; Muller G; Ullrich A; Erös D; Horváth Z; Greff Z; Marosfalvi J; Pató J; Szabadkai I; Szilágyi I; Szegedi Z; Varga I; Wáczek F; Orfi L Assay Drug Dev Technol; 2005 Oct; 3(5):543-51. PubMed ID: 16305311 [TBL] [Abstract][Full Text] [Related]
17. Improving compound quality through in vitro and in silico physicochemical profiling. van de Waterbeemd H Chem Biodivers; 2009 Nov; 6(11):1760-6. PubMed ID: 19937820 [TBL] [Abstract][Full Text] [Related]
18. Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets. Wenzel J; Matter H; Schmidt F J Chem Inf Model; 2019 Mar; 59(3):1253-1268. PubMed ID: 30615828 [TBL] [Abstract][Full Text] [Related]
19. QSAR and ADME. Hansch C; Leo A; Mekapati SB; Kurup A Bioorg Med Chem; 2004 Jun; 12(12):3391-400. PubMed ID: 15158808 [TBL] [Abstract][Full Text] [Related]
20. In silico predictions of ADME-Tox properties: drug absorption. Geerts T; Vander Heyden Y Comb Chem High Throughput Screen; 2011 Jun; 14(5):339-61. PubMed ID: 21470183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]