BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 15067711)

  • 1. Infrared spectroscopic studies of protein formulations containing glycine.
    Meyer JD; Jun Bai S; Rani M; Suryanarayanan R; Nayar R; Carpenter JF; Manning MC
    J Pharm Sci; 2004 May; 93(5):1359-66. PubMed ID: 15067711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-drying of proteins from a sucrose-glycine excipient system: effect of formulation composition on the initial recovery of protein activity.
    Liu W; Wang DQ; Nail SL
    AAPS PharmSciTech; 2005 Sep; 6(2):E150-7. PubMed ID: 16353972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR spectroscopy for the detection and evaluation of live attenuated viruses in freeze dried vaccine formulations.
    Hansen L; De Beer T; Pierre K; Pastoret S; Bonnegarde-Bernard A; Daoussi R; Vervaet C; Remon JP
    Biotechnol Prog; 2015; 31(4):1107-18. PubMed ID: 25960257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multivariate analysis of phenol in freeze-dried and spray-dried insulin formulations by NIR and FTIR.
    Maltesen MJ; Bjerregaard S; Hovgaard L; Havelund S; van de Weert M; Grohganz H
    AAPS PharmSciTech; 2011 Jun; 12(2):627-36. PubMed ID: 21560023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the stabilisation of freeze-dried lysozyme and the physical properties of the formulations.
    Liao YH; Brown MB; Martin GP
    Eur J Pharm Biopharm; 2004 Jul; 58(1):15-24. PubMed ID: 15207533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-infrared spectroscopic evaluation of lyophilized viral vaccine formulations.
    Hansen L; Beer TD; Pieters S; Heyden YV; Vervaet C; Remon JP; Montenez JP; Daoussi R
    Biotechnol Prog; 2013; 29(6):1573-86. PubMed ID: 24014045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy and multivariate analysis for the rapid discrimination between native-like and non-native states in freeze-dried protein formulations.
    Pieters S; Vander Heyden Y; Roger JM; D'Hondt M; Hansen L; Palagos B; De Spiegeleer B; Remon JP; Vervaet C; De Beer T
    Eur J Pharm Biopharm; 2013 Oct; 85(2):263-71. PubMed ID: 23665447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic evaluation of the stabilization of humanized monoclonal antibodies in amino acid formulations.
    Tian F; Middaugh CR; Offerdahl T; Munson E; Sane S; Rytting JH
    Int J Pharm; 2007 Apr; 335(1-2):20-31. PubMed ID: 17141436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for determining the relative crystallinity of chickpea starch by Fourier-transform infrared spectroscopy.
    Sun Y; Wu Z; Hu B; Wang W; Ye H; Sun Y; Wang X; Zeng X
    Carbohydr Polym; 2014 Aug; 108():153-8. PubMed ID: 24751259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure, stability, and mobility of a lyophilized IgG1 monoclonal antibody as determined using second-derivative infrared spectroscopy.
    Murphy BM; Zhang N; Payne RW; Davis JM; Abdul-Fattah AM; Matsuura JE; Herman AC; Manning MC
    J Pharm Sci; 2012 Jan; 101(1):81-91. PubMed ID: 21918984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.
    Grohganz H; Lee YY; Rantanen J; Yang M
    Int J Pharm; 2013 Apr; 447(1-2):224-30. PubMed ID: 23500620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of photostability of solid-state nicardipine hydrochloride polymorphs by using Fourier-transformed reflection-absorption infrared spectroscopy - effect of grinding on the photostability of crystal form.
    Teraoka R; Otsuka M; Matsuda Y
    Int J Pharm; 2004 Nov; 286(1-2):1-8. PubMed ID: 15500997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of In Situ Fourier Transform Infrared Spectroscopy in Cryobiological Research.
    Wolkers WF; Oldenhof H
    Methods Mol Biol; 2021; 2180():331-349. PubMed ID: 32797419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of residual water on the secondary structure and crystallinity of freeze-dried fibrinogen.
    Wahl V; Scheibelhofer O; Roessl U; Leitgeb S; De Beer T; Khinast J
    Int J Pharm; 2015 Apr; 484(1-2):95-102. PubMed ID: 25701629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of potassium bromide disk formation on the infrared spectra of dried model proteins.
    Meyer JD; Manning MC; Carpenter JF
    J Pharm Sci; 2004 Feb; 93(2):496-506. PubMed ID: 14705205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Infrared microscopy for in situ measurement of protein secondary structure during freezing and freeze-drying.
    Schwegman JJ; Carpenter JF; Nail SL
    J Pharm Sci; 2007 Jan; 96(1):179-95. PubMed ID: 17031845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid solid-state analysis of freeze-dried protein formulations using NIR and Raman spectroscopies.
    Grohganz H; Gildemyn D; Skibsted E; Flink JM; Rantanen J
    J Pharm Sci; 2011 Jul; 100(7):2871-5. PubMed ID: 21259241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of crystallinity degree on the glycine decomposition induced by 1 MeV proton bombardment in space analog conditions.
    Pilling S; Mendes LA; Bordalo V; Guaman CF; Ponciano CR; da Silveira EF
    Astrobiology; 2013 Jan; 13(1):79-91. PubMed ID: 23249407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of infrared spectroscopy to monitor protein structure and stability.
    Manning MC
    Expert Rev Proteomics; 2005 Oct; 2(5):731-43. PubMed ID: 16209652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solute crystallization in mannitol-glycine systems--implications on protein stabilization in freeze-dried formulations.
    Pyne A; Chatterjee K; Suryanarayanan R
    J Pharm Sci; 2003 Nov; 92(11):2272-83. PubMed ID: 14603512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.