BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 15068183)

  • 1. The role of neuromuscular properties in determining the end-point of a movement.
    Aoyagi Y; Stein RB; Mushahwar VK; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):12-23. PubMed ID: 15068183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movements elicited by electrical stimulation of muscles, nerves, intermediate spinal cord, and spinal roots in anesthetized and decerebrate cats.
    Aoyagi Y; Mushahwar VK; Stein RB; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):1-11. PubMed ID: 15068182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limb movements generated by stimulating muscle, nerve and spinal cord.
    Stein RB; Aoyagi Y; Mushahwar VK; Prochazka A
    Arch Ital Biol; 2002 Oct; 140(4):273-81. PubMed ID: 12228980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Movements generated by intraspinal microstimulation in the intermediate gray matter of the anesthetized, decerebrate, and spinal cat.
    Mushahwar VK; Aoyagi Y; Stein RB; Prochazka A
    Can J Physiol Pharmacol; 2004; 82(8-9):702-14. PubMed ID: 15523527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation and vectorial summation of the spinalized frog's hindlimb end-point force produced by intraspinal electrical stimulation of the cord.
    Lemay MA; Galagan JE; Hogan N; Bizzi E
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):12-23. PubMed ID: 11482358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forelimb movements and muscle responses evoked by microstimulation of cervical spinal cord in sedated monkeys.
    Moritz CT; Lucas TH; Perlmutter SI; Fetz EE
    J Neurophysiol; 2007 Jan; 97(1):110-20. PubMed ID: 16971685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements.
    Mushahwar VK; Gillard DM; Gauthier MJ; Prochazka A
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):68-81. PubMed ID: 12173741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modularity of motor output evoked by intraspinal microstimulation in cats.
    Lemay MA; Grill WM
    J Neurophysiol; 2004 Jan; 91(1):502-14. PubMed ID: 14523079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hindlimb endpoint forces predict movement direction evoked by intraspinal microstimulation in cats.
    Lemay MA; Grasse D; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):379-89. PubMed ID: 19497827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for generating prolonged functional standing using intramuscular stimulation or intraspinal microstimulation.
    Lau B; Guevremont L; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):273-85. PubMed ID: 17601198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Central program for activation of hindlimb muscles during scratching in cats].
    Baev KV
    Neirofiziologiia; 1981; 13(1):48-56. PubMed ID: 7219605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMES-assisted standing model from varied seated postures.
    Gillette JC; Stevermer CA; Raina S; Derrick TR
    Biomed Sci Instrum; 2004; 40():30-5. PubMed ID: 15133931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance.
    Kirsch RF; Boskov D; Rymer WZ
    IEEE Trans Biomed Eng; 1994 Aug; 41(8):758-70. PubMed ID: 7927398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-contraction during passive movements of the knee joint in children with cerebral palsy.
    Pierce SR; Barbe MF; Barr AE; Shewokis PA; Lauer RT
    Clin Biomech (Bristol, Avon); 2007 Nov; 22(9):1045-8. PubMed ID: 17870220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reflex regulation of antagonist muscles for control of joint equilibrium position.
    Lan N; Li Y; Sun Y; Yang FS
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):60-71. PubMed ID: 15813407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetetive hindlimb movement using intermittent adaptive neuromuscular electrical stimulation in an incomplete spinal cord injury rodent model.
    Fairchild MD; Kim SJ; Iarkov A; Abbas JJ; Jung R
    Exp Neurol; 2010 Jun; 223(2):623-33. PubMed ID: 20206164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for hip position in initiating the swing-to-stance transition in walking cats.
    McVea DA; Donelan JM; Tachibana A; Pearson KG
    J Neurophysiol; 2005 Nov; 94(5):3497-508. PubMed ID: 16093331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective and graded recruitment of cat hamstring muscles with intrafascicular stimulation.
    Dowden BR; Wilder AM; Hiatt SD; Normann RA; Brown NA; Clark GA
    IEEE Trans Neural Syst Rehabil Eng; 2009 Dec; 17(6):545-52. PubMed ID: 19696002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.