BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 15068191)

  • 1. Evaluating robustness of gait event detection based on machine learning and natural sensors.
    Hansen M; Haugland MK; Sinkjaer T
    IEEE Trans Neural Syst Rehabil Eng; 2004 Mar; 12(1):81-8. PubMed ID: 15068191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of a potential optimized stimulation intensity envelope for drop foot applications.
    O'Keeffe DT; Donnelly AE; Lyons GM
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):249-56. PubMed ID: 14518788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a neuro-fuzzy network for gait event detection using electromyography in the child with cerebral palsy.
    Lauer RT; Smith BT; Betz RR
    IEEE Trans Biomed Eng; 2005 Sep; 52(9):1532-40. PubMed ID: 16189966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of portable FES-based neural orthoses for the correction of drop foot.
    Lyons GM; Sinkjaer T; Burridge JH; Wilcox DJ
    IEEE Trans Neural Syst Rehabil Eng; 2002 Dec; 10(4):260-79. PubMed ID: 12611364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network and fuzzy control in FES-assisted locomotion for the hemiplegic.
    Chen YL; Chen SC; Chen WL; Hsiao CC; Kuo TS; Lai JS
    J Med Eng Technol; 2004; 28(1):32-8. PubMed ID: 14660183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait initiation with electromyographically triggered electrical stimulation in people with partial paralysis.
    Dutta A; Kobetic R; Triolo RJ
    J Biomech Eng; 2009 Aug; 131(8):081002. PubMed ID: 19604014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time gait event detection for paraplegic FES walking.
    Skelly MM; Chizeck HJ
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):59-68. PubMed ID: 11482364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of walking speed changes on tibialis anterior EMG during healthy gait for FES envelope design in drop foot correction.
    Byrne CA; O'Keeffe DT; Donnelly AE; Lyons GM
    J Electromyogr Kinesiol; 2007 Oct; 17(5):605-16. PubMed ID: 16990012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.
    Hart DJ; Taylor PN; Chappell PH; Wood DE
    Med Eng Phys; 2006 Jun; 28(5):438-48. PubMed ID: 16140559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulation parameter optimization for functional electrical stimulation assisted gait in human spinal cord injury using response surface methodology.
    Kim Y; Schmit BD; Youm Y
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):485-94. PubMed ID: 16488061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Walking with WALK! A cooperative, patient-driven neuroprosthetic system.
    Fuhr T; Quintern J; Riener R; Schmidt G
    IEEE Eng Med Biol Mag; 2008; 27(1):38-48. PubMed ID: 18270049
    [No Abstract]   [Full Text] [Related]  

  • 13. Patient-driven loop control for ambulation function restoration in a non-invasive functional electrical stimulation system.
    Chen WL; Chen SC; Chen CC; Chou CH; Shih YY; Chen YL; Kuo TS
    Disabil Rehabil; 2010; 32(1):65-71. PubMed ID: 19925278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking.
    To CS; Kirsch RF; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):227-35. PubMed ID: 16003904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait evaluation in hemiparetic patients using subcutaneous peroneal electrical stimulation.
    Kljajić M; Malezic M; Aćimović R; Vavken E; Stanic U; Pangrsic B; Rozman J
    Scand J Rehabil Med; 1992 Sep; 24(3):121-6. PubMed ID: 1411357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG of the tibialis anterior demonstrates a training effect after utilization of a foot drop stimulator.
    Pilkar R; Yarossi M; Nolan KJ
    NeuroRehabilitation; 2014 Jan; 35(2):299-305. PubMed ID: 24990033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation.
    Thompson AK; Estabrooks KL; Chong S; Stein RB
    Neurorehabil Neural Repair; 2009 Feb; 23(2):133-42. PubMed ID: 19023139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia.
    Kottink AI; Hermens HJ; Nene AV; Tenniglo MJ; van der Aa HE; Buschman HP; Ijzerman MJ
    Arch Phys Med Rehabil; 2007 Aug; 88(8):971-8. PubMed ID: 17678657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient FES triggering applying Kalman filter during sensory supported treadmill walking.
    Cikajlo I; Matjacić Z; Bajd T
    J Med Eng Technol; 2008; 32(2):133-44. PubMed ID: 18297504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.