These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15068363)

  • 1. Development and testing of a de novo drug-design algorithm.
    Pellegrini E; Field MJ
    J Comput Aided Mol Des; 2003 Oct; 17(10):621-41. PubMed ID: 15068363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase.
    Birch L; Murray CW; Hartshorn MJ; Tickle IJ; Verdonk ML
    J Comput Aided Mol Des; 2002 Dec; 16(12):855-69. PubMed ID: 12825619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo ligand design with explicit water molecules: an application to bacterial neuraminidase.
    Mancera RL
    J Comput Aided Mol Des; 2002 Jul; 16(7):479-99. PubMed ID: 12510881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of heuristic search algorithms for molecular docking.
    Westhead DR; Clark DE; Murray CW
    J Comput Aided Mol Des; 1997 May; 11(3):209-28. PubMed ID: 9263849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum mechanical/molecular mechanical approaches to transition state structure: mechanism of sialidase action.
    Barnes JA; Williams IH
    Biochem Soc Trans; 1996 Feb; 24(1):263-8. PubMed ID: 8674682
    [No Abstract]   [Full Text] [Related]  

  • 6. PRO-LIGAND: an approach to de novo molecular design. 1. Application to the design of organic molecules.
    Clark DE; Frenkel D; Levy SA; Li J; Murray CW; Robson B; Waszkowycz B; Westhead DR
    J Comput Aided Mol Des; 1995 Feb; 9(1):13-32. PubMed ID: 7751867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LigBuilder 2: a practical de novo drug design approach.
    Yuan Y; Pei J; Lai L
    J Chem Inf Model; 2011 May; 51(5):1083-91. PubMed ID: 21513346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effects in the designs of neuraminidase ligands: analysis from docking and molecular dynamics studies.
    Yang Z; Nie Y; Yang G; Zu Y; Fu Y; Zhou L
    J Theor Biol; 2010 Dec; 267(3):363-74. PubMed ID: 20831875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of benzoic acid inhibitors of influenza neuraminidase containing a cyclic substitution for the N-acetyl grouping.
    Brouillette WJ; Atigadda VR; Luo M; Air GM; Babu YS; Bantia S
    Bioorg Med Chem Lett; 1999 Jul; 9(14):1901-6. PubMed ID: 10450950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between combinatorial chemistry and de novo design.
    Leach AR; Bryce RA; Robinson AJ
    J Mol Graph Model; 2000; 18(4-5):358-67, 526. PubMed ID: 11143555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IVGA3D: De novo ligand design using a variable sized tree representation.
    Bandyopadhyay S; Sengupta S
    Protein Pept Lett; 2010 Dec; 17(12):1495-516. PubMed ID: 20518735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling.
    Zhang Q; Yang J; Liang K; Feng L; Li S; Wan J; Xu X; Yang G; Liu D; Yang S
    J Chem Inf Model; 2008 Sep; 48(9):1802-12. PubMed ID: 18707092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The atom assignment problem in automated de novo drug design. 3. Algorithms for optimization of fragment placement onto 3D molecular graphs.
    Barakat MT; Dean PM
    J Comput Aided Mol Des; 1995 Aug; 9(4):359-72. PubMed ID: 8523045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1.
    Malaisree M; Rungrotmongkol T; Decha P; Intharathep P; Aruksakunwong O; Hannongbua S
    Proteins; 2008 Jun; 71(4):1908-18. PubMed ID: 18175324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo method for finding important ligand fragments from receptor data.
    Burt S; Hutchins C; Zielinski PJ
    J Comput Aided Mol Des; 1997 May; 11(3):243-55. PubMed ID: 9263851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tautomerism in computer-aided drug design.
    Pospisil P; Ballmer P; Scapozza L; Folkers G
    J Recept Signal Transduct Res; 2003; 23(4):361-71. PubMed ID: 14753297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in de novo design strategy for practical lead identification.
    Honma T
    Med Res Rev; 2003 Sep; 23(5):606-32. PubMed ID: 12789688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based and multiple potential three-dimensional quantitative structure-activity relationship (SB-MP-3D-QSAR) for inhibitor design.
    Du QS; Gao J; Wei YT; Du LQ; Wang SQ; Huang RB
    J Chem Inf Model; 2012 Apr; 52(4):996-1004. PubMed ID: 22480344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.