BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1170 related articles for article (PubMed ID: 15068584)

  • 41. A repeated beta-turn structure in poly(Ala-Gly) as a model for silk I of Bombyx mori silk fibroin studied with two-dimensional spin-diffusion NMR under off magic angle spinning and rotational echo double resonance.
    Asakura T; Ashida J; Yamane T; Kameda T; Nakazawa Y; Ohgo K; Komatsu K
    J Mol Biol; 2001 Feb; 306(2):291-305. PubMed ID: 11237601
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New insight into the mechanism underlying fibroin secretion in silkworm, Bombyx mori.
    Long D; Lu W; Zhang Y; Guo Q; Xiang Z; Zhao A
    FEBS J; 2015 Jan; 282(1):89-101. PubMed ID: 25302556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Production of Bombyx mori silk fibroin incorporated with unnatural amino acids.
    Teramoto H; Kojima K
    Biomacromolecules; 2014 Jul; 15(7):2682-90. PubMed ID: 24884258
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Bombyx mori silk fibroin liquid crystallinity and crystallization at aqueous fibroin-organic solvent interfaces.
    Valluzzi R; He SJ; Gido SP; Kaplan D
    Int J Biol Macromol; 1999; 24(2-3):227-36. PubMed ID: 10342769
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular nature of dominant naked pupa mutation reveals novel insights into silk production in Bombyx mori.
    Hu W; Lu W; Wei L; Zhang Y; Xia Q
    Insect Biochem Mol Biol; 2019 Jun; 109():52-62. PubMed ID: 30954682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative analysis of proteins from Bombyx mori and Antheraea pernyi cocoons for the purpose of silk identification.
    Chen R; Zhu C; Hu M; Zhou L; Yang H; Zheng H; Zhou Y; Hu Z; Peng Z; Wang B
    J Proteomics; 2019 Oct; 209():103510. PubMed ID: 31479798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predominant synthesis of fibroin heavy and light chains on the membrane-bound polysomes prepared from the posterior silk gland of the silkworm, Bombyx mori.
    Oyama F; Mizuno S; Shimura K
    J Biochem; 1984 Oct; 96(4):1143-53. PubMed ID: 6520117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New insights into the proteins interacting with the promoters of silkworm fibroin genes.
    Ma Y; Luo Q; Ou Y; Tang Y; Zeng W; Wang H; Hu J; Xu H
    Sci Rep; 2021 Aug; 11(1):15880. PubMed ID: 34354143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and characterization of biomaterial film from gland silk of muga and eri silkworms.
    Dutta S; Talukdar B; Bharali R; Rajkhowa R; Devi D
    Biopolymers; 2013 May; 99(5):326-33. PubMed ID: 23426575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development stage-specific expression of fibroin in the silk worm Bombyx mori is regulated translationally.
    Patel CV; Gopinathan KP
    Indian J Biochem Biophys; 1991; 28(5-6):521-30. PubMed ID: 1725868
    [TBL] [Abstract][Full Text] [Related]  

  • 51. pH induced changes in the rheology of silk fibroin solution from the middle division of Bombyx mori silkworm.
    Terry AE; Knight DP; Porter D; Vollrath F
    Biomacromolecules; 2004; 5(3):768-72. PubMed ID: 15132659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiprotein bridging factor 2 regulates the expression of the fibroin heavy chain gene by interacting with Bmdimmed in the silkworm Bombyx mori.
    Zhou C; Zha X; Shi P; Wei S; Wang H; Zheng R; Xia Q
    Insect Mol Biol; 2016 Aug; 25(4):509-18. PubMed ID: 27110998
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural changes of Bombyx mori fibroin from silk gland to fiber as evidenced by Terahertz spectroscopy and other methods.
    Wu X; Wu X; Shao M; Yang B
    Int J Biol Macromol; 2017 Sep; 102():1202-1210. PubMed ID: 28487194
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide.
    Freddi G; Pessina G; Tsukada M
    Int J Biol Macromol; 1999; 24(2-3):251-63. PubMed ID: 10342772
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An active recombinant cocoonase from the silkworm Bombyx mori: bleaching, degumming and sericin degrading activities.
    Unajak S; Aroonluke S; Promboon A
    J Sci Food Agric; 2015 Apr; 95(6):1179-89. PubMed ID: 25042939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching.
    Asakura T; Yao J
    Protein Sci; 2002 Nov; 11(11):2706-13. PubMed ID: 12381852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanical properties of regenerated Bombyx mori silk fibers and recombinant silk fibers produced by transgenic silkworms.
    Zhu Z; Kikuchi Y; Kojima K; Tamura T; Kuwabara N; Nakamura T; Asakura T
    J Biomater Sci Polym Ed; 2010; 21(3):395-411. PubMed ID: 20178693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm.
    Hossain KS; Ochi A; Ooyama E; Magoshi J; Nemoto N
    Biomacromolecules; 2003; 4(2):350-9. PubMed ID: 12625731
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure of Bombyx mori silk fibroin before spinning in solid state studied with wide angle x-ray scattering and (13)C cross-polarization/magic angle spinning NMR.
    Asakura T; Yamane T; Nakazawa Y; Kameda T; Ando K
    Biopolymers; 2001 Apr; 58(5):521-5. PubMed ID: 11241223
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering.
    Bhardwaj N; Singh YP; Devi D; Kandimalla R; Kotoky J; Mandal BB
    J Mater Chem B; 2016 Jun; 4(21):3670-3684. PubMed ID: 32263306
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 59.