These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 15068868)

  • 1. Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field.
    Thullner M; Schroth MH; Zeyer J; Kinzelbach W
    J Contam Hydrol; 2004 May; 70(1-2):37-62. PubMed ID: 15068868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2007 Aug; 93(1-4):58-71. PubMed ID: 17336422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media.
    Thullner M; Baveye P
    Biotechnol Bioeng; 2008 Apr; 99(6):1337-51. PubMed ID: 18023059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of biological clogging in unsaturated porous media.
    Soleimani S; Van Geel PJ; Isgor OB; Mostafa MB
    J Contam Hydrol; 2009 Apr; 106(1-2):39-50. PubMed ID: 19201505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2012 Aug; 136-137():1-9. PubMed ID: 22647500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm development and the dynamics of preferential flow paths in porous media.
    Bottero S; Storck T; Heimovaara TJ; van Loosdrecht MC; Enzien MV; Picioreanu C
    Biofouling; 2013; 29(9):1069-86. PubMed ID: 24028574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bilayer coarse-fine infiltration system minimizes bioclogging: The relevance of depth-dynamics.
    Perujo N; Romaní AM; Sanchez-Vila X
    Sci Total Environ; 2019 Jun; 669():559-569. PubMed ID: 30889445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore-network modeling of biofilm evolution in porous media.
    Ezeuko CC; Sen A; Grigoryan A; Gates ID
    Biotechnol Bioeng; 2011 Oct; 108(10):2413-23. PubMed ID: 21520022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of flow pattern on kinetic characteristic of the biomass fixed inside porous medium.
    Matsui Y; Deguchi H
    Water Sci Technol; 2002; 46(1-2):419-22. PubMed ID: 12216660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical experiments for bioclogging in porous media.
    Ham YJ; Kim SB; Park SJ
    Environ Technol; 2007 Oct; 28(10):1079-89. PubMed ID: 17970514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional cellular automaton model for mixed-culture biofilm.
    Pizarro GE; García C; Moreno R; Sepúlveda ME
    Water Sci Technol; 2004; 49(11-12):193-8. PubMed ID: 15303741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado.
    Li L; Steefel CI; Kowalsky MB; Englert A; Hubbard SS
    J Contam Hydrol; 2010 Mar; 112(1-4):45-63. PubMed ID: 20036028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biofilm morphology as related to the porous media clogging.
    Kim JW; Choi H; Pachepsky YA
    Water Res; 2010 Feb; 44(4):1193-201. PubMed ID: 19604533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm modeling with AQUASIM.
    Wanner O; Morgenroth E
    Water Sci Technol; 2004; 49(11-12):137-44. PubMed ID: 15303734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilm and biomass characteristics in high-performance fluidized-bed biofilm reactors.
    Rabah FK; Dahab MF
    Water Res; 2004 Nov; 38(19):4262-70. PubMed ID: 15491672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of biomass accumulation on microbially enhanced dissolution of a PCE pool: a numerical simulation.
    Chu M; Kitanidis PK; McCarty PL
    J Contam Hydrol; 2003 Aug; 65(1-2):79-100. PubMed ID: 12855202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameter and observation importance in modelling virus transport in saturated porous media-investigations in a homogenous system.
    Barth GR; Hill MC
    J Contam Hydrol; 2005 Nov; 80(3-4):107-29. PubMed ID: 16202474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction to the IWA task group on biofilm modeling.
    Noguera DR; Morgenroth E
    Water Sci Technol; 2004; 49(11-12):131-6. PubMed ID: 15303733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.