These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
376 related articles for article (PubMed ID: 15069087)
21. Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. Zhu Y; Yang GY; Ahlemeyer B; Pang L; Che XM; Culmsee C; Klumpp S; Krieglstein J J Neurosci; 2002 May; 22(10):3898-909. PubMed ID: 12019309 [TBL] [Abstract][Full Text] [Related]
22. Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. Deaton RA; Su C; Valencia TG; Grant SR J Biol Chem; 2005 Sep; 280(35):31172-81. PubMed ID: 15980430 [TBL] [Abstract][Full Text] [Related]
23. p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells. Nakamura K; Shirai T; Morishita S; Uchida S; Saeki-Miura K; Makishima F Exp Cell Res; 1999 Aug; 250(2):351-63. PubMed ID: 10413589 [TBL] [Abstract][Full Text] [Related]
24. Transforming growth factor-beta1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38alpha and p38delta mitogen-activated protein kinase-dependent pathway in murine mesangial cells. Wang L; Kwak JH; Kim SI; He Y; Choi ME J Biol Chem; 2004 Aug; 279(32):33213-9. PubMed ID: 15143069 [TBL] [Abstract][Full Text] [Related]
25. Smad and p38-MAPK signaling mediates apoptotic effects of transforming growth factor-beta1 in human airway epithelial cells. Undevia NS; Dorscheid DR; Marroquin BA; Gugliotta WL; Tse R; White SR Am J Physiol Lung Cell Mol Physiol; 2004 Sep; 287(3):L515-24. PubMed ID: 15132952 [TBL] [Abstract][Full Text] [Related]
26. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-beta-induced aggrecan gene expression in chondrogenic ATDC5 cells. Watanabe H; de Caestecker MP; Yamada Y J Biol Chem; 2001 Apr; 276(17):14466-73. PubMed ID: 11278290 [TBL] [Abstract][Full Text] [Related]
27. Role of mitogen-activated protein kinase in the regulation of transforming growth factor-beta-induced fibronectin accumulation in cultured renal interstitial fibroblasts. Suzuki H; Uchida K; Nitta K; Nihei H Clin Exp Nephrol; 2004 Sep; 8(3):188-95. PubMed ID: 15480895 [TBL] [Abstract][Full Text] [Related]
28. Evidence for a role of mixed lineage kinases in neuronal apoptosis. Mota M; Reeder M; Chernoff J; Bazenet CE J Neurosci; 2001 Jul; 21(14):4949-57. PubMed ID: 11438570 [TBL] [Abstract][Full Text] [Related]
29. POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. Xu Z; Kukekov NV; Greene LA EMBO J; 2003 Jan; 22(2):252-61. PubMed ID: 12514131 [TBL] [Abstract][Full Text] [Related]
31. Regulation of biglycan gene expression by transforming growth factor-beta requires MKK6-p38 mitogen-activated protein Kinase signaling downstream of Smad signaling. Ungefroren H; Lenschow W; Chen WB; Faendrich F; Kalthoff H J Biol Chem; 2003 Mar; 278(13):11041-9. PubMed ID: 12538652 [TBL] [Abstract][Full Text] [Related]
32. Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. Munshi HG; Wu YI; Mukhopadhyay S; Ottaviano AJ; Sassano A; Koblinski JE; Platanias LC; Stack MS J Biol Chem; 2004 Sep; 279(37):39042-50. PubMed ID: 15247230 [TBL] [Abstract][Full Text] [Related]
33. Hsp90/p50cdc37 is required for mixed-lineage kinase (MLK) 3 signaling. Zhang H; Wu W; Du Y; Santos SJ; Conrad SE; Watson JT; Grammatikakis N; Gallo KA J Biol Chem; 2004 May; 279(19):19457-63. PubMed ID: 15001580 [TBL] [Abstract][Full Text] [Related]
34. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Zhang H; Ozaki I; Mizuta T; Yoshimura T; Matsuhashi S; Eguchi Y; Yasutake T; Hisatomi A; Sakai T; Yamamoto K Cancer Sci; 2004 Nov; 95(11):878-86. PubMed ID: 15546505 [TBL] [Abstract][Full Text] [Related]
35. Cdc2 and Cdk2 kinase activated by transforming growth factor-beta1 trigger apoptosis through the phosphorylation of retinoblastoma protein in FaO hepatoma cells. Choi KS; Eom YW; Kang Y; Ha MJ; Rhee H; Yoon JW; Kim SJ J Biol Chem; 1999 Nov; 274(45):31775-83. PubMed ID: 10542199 [TBL] [Abstract][Full Text] [Related]
36. Paclitaxel induces prolonged activation of the Ras/MEK/ERK pathway independently of activating the programmed cell death machinery. Okano J ; Rustgi AK J Biol Chem; 2001 Jun; 276(22):19555-64. PubMed ID: 11278851 [TBL] [Abstract][Full Text] [Related]
37. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. Shen YH; Godlewski J; Zhu J; Sathyanarayana P; Leaner V; Birrer MJ; Rana A; Tzivion G J Biol Chem; 2003 Jul; 278(29):26715-21. PubMed ID: 12738796 [TBL] [Abstract][Full Text] [Related]
38. Involvement of c-Src kinase in the regulation of TGF-beta1-induced apoptosis. Park SS; Eom YW; Kim EH; Lee JH; Min DS; Kim S; Kim SJ; Choi KS Oncogene; 2004 Aug; 23(37):6272-81. PubMed ID: 15208664 [TBL] [Abstract][Full Text] [Related]
39. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Edlund S; Landström M; Heldin CH; Aspenström P Mol Biol Cell; 2002 Mar; 13(3):902-14. PubMed ID: 11907271 [TBL] [Abstract][Full Text] [Related]
40. Transforming growth factor-beta 1-induced activation of the ERK pathway/activator protein-1 in human lung fibroblasts requires the autocrine induction of basic fibroblast growth factor. Finlay GA; Thannickal VJ; Fanburg BL; Paulson KE J Biol Chem; 2000 Sep; 275(36):27650-6. PubMed ID: 10862759 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]