BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 15069186)

  • 1. Parallel genetic basis for repeated evolution of armor loss in Alaskan threespine stickleback populations.
    Cresko WA; Amores A; Wilson C; Murphy J; Currey M; Phillips P; Bell MA; Kimmel CB; Postlethwait JH
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):6050-5. PubMed ID: 15069186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel evolution of Pitx1 underlies pelvic reduction in Scottish threespine stickleback (Gasterosteus aculeatus).
    Coyle SM; Huntingford FA; Peichel CL
    J Hered; 2007; 98(6):581-6. PubMed ID: 17693397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genetic architecture of parallel armor plate reduction in threespine sticklebacks.
    Colosimo PF; Peichel CL; Nereng K; Blackman BK; Shapiro MD; Schluter D; Kingsley DM
    PLoS Biol; 2004 May; 2(5):E109. PubMed ID: 15069472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predation's role in repeated phenotypic and genetic divergence of armor in threespine stickleback.
    Marchinko KB
    Evolution; 2009 Jan; 63(1):127-38. PubMed ID: 18803682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags.
    Hohenlohe PA; Bassham S; Etter PD; Stiffler N; Johnson EA; Cresko WA
    PLoS Genet; 2010 Feb; 6(2):e1000862. PubMed ID: 20195501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twelve years of contemporary armor evolution in a threespine stickleback population.
    Bell MA; Aguirre WE; Buck NJ
    Evolution; 2004 Apr; 58(4):814-24. PubMed ID: 15154557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environment specific pleiotropy facilitates divergence at the Ectodysplasin locus in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Evolution; 2009 Nov; 63(11):2831-7. PubMed ID: 19545262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple evolutionary pathways to decreased lateral plate coverage in freshwater threespine sticklebacks.
    Leinonen T; McCairns RJ; Herczeg G; Merilä J
    Evolution; 2012 Dec; 66(12):3866-75. PubMed ID: 23206143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast evolution from precast bricks: genomics of young freshwater populations of threespine stickleback Gasterosteus aculeatus.
    Terekhanova NV; Logacheva MD; Penin AA; Neretina TV; Barmintseva AE; Bazykin GA; Kondrashov AS; Mugue NS
    PLoS Genet; 2014 Oct; 10(10):e1004696. PubMed ID: 25299485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse evolution of armor plates in the threespine stickleback.
    Kitano J; Bolnick DI; Beauchamp DA; Mazur MM; Mori S; Nakano T; Peichel CL
    Curr Biol; 2008 May; 18(10):769-774. PubMed ID: 18485710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosomal Fusions Facilitate Adaptation to Divergent Environments in Threespine Stickleback.
    Liu Z; Roesti M; Marques D; Hiltbrunner M; Saladin V; Peichel CL
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 34908155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative genetic variation in static allometry in the threespine stickleback.
    McGuigan K; Nishimura N; Currey M; Hurwit D; Cresko WA
    Integr Comp Biol; 2010 Dec; 50(6):1067-80. PubMed ID: 21558260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of plastic and evolved DNA methylation in parallel adaptation of threespine stickleback (Gasterosteus aculeatus).
    Hu J; Barrett RDH
    Mol Ecol; 2023 Apr; 32(7):1581-1591. PubMed ID: 36560898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freshwater Colonization, Adaptation, and Genomic Divergence in Threespine Stickleback.
    Aguirre WE; Reid K; Rivera J; Heins DC; Veeramah KR; Bell MA
    Integr Comp Biol; 2022 Aug; 62(2):388-405. PubMed ID: 35660873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predation-imposed selection on threespine stickleback (Gasterosteus aculeatus) morphology: a test of the refuge use hypothesis.
    Leinonen T; Herczeg G; Cano JM; Merilä J
    Evolution; 2011 Oct; 65(10):2916-26. PubMed ID: 21967432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraints on utilization of the EDA-signaling pathway in threespine stickleback evolution.
    Knecht AK; Hosemann KE; Kingsley DM
    Evol Dev; 2007; 9(2):141-54. PubMed ID: 17371397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraguild predation leads to genetically based character shifts in the threespine stickleback.
    Miller SE; Metcalf D; Schluter D
    Evolution; 2015 Dec; 69(12):3194-203. PubMed ID: 26527484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-density SNP array for analyzing differential selection in freshwater and marine populations of threespine stickleback (Gasterosteus aculeatus).
    Ferchaud AL; Pedersen SH; Bekkevold D; Jian J; Niu Y; Hansen MM
    BMC Genomics; 2014 Oct; 15(1):867. PubMed ID: 25286752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variation in female life-history traits among Alaskan populations of the threespine stickleback, Gasterosteus aculeatus L. (Pisces: Gasterosteidae).
    Baker JA; Foster SA; Heins DC; Bell MA; King RW
    Biol J Linn Soc Lond; 1998 Jan; 63(1):141-59. PubMed ID: 9480735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.