These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 15069186)

  • 41. Adaptive evolution of lateral plates in three-spined stickleback Gasterosteus aculeatus: a case study in functional analysis of natural variation.
    Barrett RD
    J Fish Biol; 2010 Aug; 77(2):311-28. PubMed ID: 20646158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Variation in Lateral Plate Quality in Threespine Stickleback from Fresh, Brackish and Marine Water: A Micro-Computed Tomography Study.
    Wiig E; Reseland JE; Østbye K; Haugen HJ; Vøllestad LA
    PLoS One; 2016; 11(10):e0164578. PubMed ID: 27764140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback.
    Morris MRJ; Bowles E; Allen BE; Jamniczky HA; Rogers SM
    BMC Evol Biol; 2018 Jul; 18(1):113. PubMed ID: 30021523
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward conservation of genetic and phenotypic diversity in Japanese sticklebacks.
    Kitano J; Mori S
    Genes Genet Syst; 2016 Oct; 91(2):77-84. PubMed ID: 27301281
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.
    Conte GL; Arnegard ME; Best J; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Genetics; 2015 Nov; 201(3):1189-200. PubMed ID: 26384359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adaptation and constraint in a stickleback radiation.
    Voje KL; Mazzarella AB; Hansen TF; Østbye K; Klepaker T; Bass A; Herland A; Baerum KM; Gregersen F; Vøllestad LA
    J Evol Biol; 2013 Nov; 26(11):2396-414. PubMed ID: 24118552
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Discriminating selection on lateral plate phenotype and its underlying gene, Ectodysplasin, in threespine stickleback.
    Rennison DJ; Heilbron K; Barrett RD; Schluter D
    Am Nat; 2015 Jan; 185(1):150-6. PubMed ID: 25560560
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Natural selection and the genetics of adaptation in threespine stickleback.
    Schluter D; Marchinko KB; Barrett RD; Rogers SM
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1552):2479-86. PubMed ID: 20643737
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.
    Miller CT; Glazer AM; Summers BR; Blackman BK; Norman AR; Shapiro MD; Cole BL; Peichel CL; Schluter D; Kingsley DM
    Genetics; 2014 May; 197(1):405-20. PubMed ID: 24652999
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinct developmental genetic mechanisms underlie convergently evolved tooth gain in sticklebacks.
    Ellis NA; Glazer AM; Donde NN; Cleves PA; Agoglia RM; Miller CT
    Development; 2015 Jul; 142(14):2442-51. PubMed ID: 26062935
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Threespine Stickleback: A Model System For Evolutionary Genomics.
    Reid K; Bell MA; Veeramah KR
    Annu Rev Genomics Hum Genet; 2021 Aug; 22():357-383. PubMed ID: 33909459
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.
    Colosimo PF; Hosemann KE; Balabhadra S; Villarreal G; Dickson M; Grimwood J; Schmutz J; Myers RM; Schluter D; Kingsley DM
    Science; 2005 Mar; 307(5717):1928-33. PubMed ID: 15790847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The ectodysplasin-A receptor is a candidate gene for lateral plate number variation in stickleback fish.
    Laurentino TG; Boileau N; Ronco F; Berner D
    G3 (Bethesda); 2022 May; 12(6):. PubMed ID: 35377433
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Convergent evolution of gene expression in two high-toothed stickleback populations.
    Hart JC; Ellis NA; Eisen MB; Miller CT
    PLoS Genet; 2018 Jun; 14(6):e1007443. PubMed ID: 29897962
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural selection on a major armor gene in threespine stickleback.
    Barrett RD; Rogers SM; Schluter D
    Science; 2008 Oct; 322(5899):255-7. PubMed ID: 18755942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic divergence outpaces phenotypic evolution among threespine stickleback populations in old freshwater habitats.
    Currey MC; Bassham SL; Cresko WA
    Biol J Linn Soc Lond; 2019 Oct; 128(2):415-434. PubMed ID: 36846094
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback.
    Yong L; Peichel CL; McKinnon JS
    G3 (Bethesda); 2015 Dec; 6(3):579-88. PubMed ID: 26715094
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Evolution in parallel: new insights from a classic system.
    Foster SA; Baker JA
    Trends Ecol Evol; 2004 Sep; 19(9):456-9. PubMed ID: 16701305
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic basis of sexual dimorphism in the threespine stickleback Gasterosteus aculeatus.
    Leinonen T; Cano JM; Merilä J
    Heredity (Edinb); 2011 Feb; 106(2):218-27. PubMed ID: 20700139
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiple paths to the same destination: Influence of gene flow on convergent evolution.
    Yamasaki YY; Kitano J
    Mol Ecol; 2021 May; 30(9):1939-1942. PubMed ID: 33760318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.