BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 15070141)

  • 1. Two-year observation of artificial intervertebral disc replacement: results after supplemental ultra-high strength bioresorbable spinal stabilization.
    Kotani Y; Abumi K; Shikinami Y; Takahata M; Kadoya K; Kadosawa T; Minami A; Kaneda K
    J Neurosurg; 2004 Apr; 100(4 Suppl Spine):337-42. PubMed ID: 15070141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial intervertebral disc replacement using bioactive three-dimensional fabric: design, development, and preliminary animal study.
    Kotani Y; Abumi K; Shikinami Y; Takada T; Kadoya K; Shimamoto N; Ito M; Kadosawa T; Fujinaga T; Kaneda K
    Spine (Phila Pa 1976); 2002 May; 27(9):929-35; discussion 935-6. PubMed ID: 11979163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biomimetic artificial intervertebral disc system composed of a cubic three-dimensional fabric.
    Shikinami Y; Kawabe Y; Yasukawa K; Tsuta K; Kotani Y; Abumi K
    Spine J; 2010 Feb; 10(2):141-52. PubMed ID: 19944651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Total disc replacement arthroplasty using the AcroFlex lumbar disc: a non-human primate model.
    Cunningham BW; Lowery GL; Serhan HA; Dmitriev AE; Orbegoso CM; McAfee PC; Fraser RD; Ross RE; Kulkarni SS
    Eur Spine J; 2002 Oct; 11 Suppl 2(Suppl 2):S115-23. PubMed ID: 12384732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone ingrowth fixation of artificial intervertebral disc consisting of bioceramic-coated three-dimensional fabric.
    Takahata M; Kotani Y; Abumi K; Shikinami Y; Kadosawa T; Kaneda K; Minami A
    Spine (Phila Pa 1976); 2003 Apr; 28(7):637-44; discussion 644. PubMed ID: 12671347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical and morphologic evaluation of a three-dimensional fabric sheep artificial intervertebral disc: in vitro and in vivo analysis.
    Kadoya K; Kotani Y; Abumi K; Takada T; Shimamoto N; Shikinami Y; Kadosawa T; Kaneda K
    Spine (Phila Pa 1976); 2001 Jul; 26(14):1562-9. PubMed ID: 11462087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multidirectional flexibility analysis of cervical artificial disc reconstruction: in vitro human cadaveric spine model.
    Kotani Y; Cunningham BW; Abumi K; Dmitriev AE; Ito M; Hu N; Shikinami Y; McAfee PC; Minami A
    J Neurosurg Spine; 2005 Feb; 2(2):188-94. PubMed ID: 15739532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical and histological evaluation of a bioresorbable lumbar interbody fusion cage.
    Hojo Y; Kotani Y; Ito M; Abumi K; Kadosawa T; Shikinami Y; Minami A
    Biomaterials; 2005 May; 26(15):2643-51. PubMed ID: 15585267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes.
    McAfee PC; Cunningham B; Holsapple G; Adams K; Blumenthal S; Guyer RD; Dmietriev A; Maxwell JH; Regan JJ; Isaza J
    Spine (Phila Pa 1976); 2005 Jul; 30(14):1576-83; discussion E388-90. PubMed ID: 16025025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multidirectional flexibility analysis of anterior and posterior lumbar artificial disc reconstruction: in vitro human cadaveric spine model.
    Kotani Y; Cunningham BW; Abumi K; Dmitriev AE; Hu N; Ito M; Shikinami Y; McAfee PC; Minami A
    Eur Spine J; 2006 Oct; 15(10):1511-20. PubMed ID: 16552532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Development and in vivo biomechanics of goat mobile artificial lumbar spine complex].
    Zhang F; He XJ; Liu JT; Wang R; Qin J; Zang QJ; Zhang T; Liu ZY
    Zhongguo Gu Shang; 2024 Mar; 37(3):281-7. PubMed ID: 38515416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioabsorbable interbody cages in a sheep cervical spine fusion model.
    Kandziora F; Pflugmacher R; Scholz M; Eindorf T; Schnake KJ; Haas NP
    Spine (Phila Pa 1976); 2004 Sep; 29(17):1845-55; discussion 1856. PubMed ID: 15534403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative biomechanical analysis of a cervical cage made of an unsintered hydroxyapatite particle and poly-L-lactide composite in a cadaver model.
    Totoribe K; Matsumoto M; Goel VK; Yang SJ; Tajima N; Shikinami Y
    Spine (Phila Pa 1976); 2003 May; 28(10):1010-5; discussion 1015. PubMed ID: 12768139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System)--a finite element analysis.
    Chen CS; Huang CH; Shih SL
    BMC Musculoskelet Disord; 2015 Apr; 16():81. PubMed ID: 25880231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability potential of spinal instrumentations in tumor vertebral body replacement surgery.
    Vahldiek MJ; Panjabi MM
    Spine (Phila Pa 1976); 1998 Mar; 23(5):543-50. PubMed ID: 9530785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results.
    Korovessis P; Papazisis Z; Koureas G; Lambiris E
    Spine (Phila Pa 1976); 2004 Apr; 29(7):735-42. PubMed ID: 15087795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basic scientific considerations in total disc arthroplasty.
    Cunningham BW
    Spine J; 2004; 4(6 Suppl):219S-230S. PubMed ID: 15541670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo comparison study in goats for a novel motion-preserving cervical joint system.
    Qin J; Zhao C; Wang D; Zhao B; Dong J; Li H; Sang R; Wang S; Fu J; Kong R; He X
    PLoS One; 2017; 12(6):e0178775. PubMed ID: 28582418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of Lateral Tibial Condylar Fractures Using Bioactive, Bioresorbable Forged Composites of Raw Particulate Unsintered Hydroxyapatite/Poly-L-Lactide Screws.
    Kuroyanagi G; Yoshihara H; Yamamoto N; Suzuki H; Yamada K; Yoshida Y; Otsuka T; Takada N
    Orthopedics; 2018 May; 41(3):e365-e368. PubMed ID: 29570761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical evaluation of translaminar facet joint fixation. A comparative study of poly-L-lactide pins, screws, and pedicle fixation.
    Deguchi M; Cheng BC; Sato K; Matsuyama Y; Zdeblick TA
    Spine (Phila Pa 1976); 1998 Jun; 23(12):1307-12; discussion 1313. PubMed ID: 9654619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.