BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 15070353)

  • 1. Distributed computing and NMR constraint-based high-resolution structure determination: applied for bioactive Peptide endothelin-1 to determine C-terminal folding.
    Takashima H; Mimura N; Ohkubo T; Yoshida T; Tamaoki H; Kobayashi Y
    J Am Chem Soc; 2004 Apr; 126(14):4504-5. PubMed ID: 15070353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution X-ray structure of the unexpectedly stable dimer of the [Lys(-2)-Arg(-1)-des(17-21)]endothelin-1 peptide.
    Hoh F; Cerdan R; Kaas Q; Nishi Y; Chiche L; Kubo S; Chino N; Kobayashi Y; Dumas C; Aumelas A
    Biochemistry; 2004 Dec; 43(48):15154-68. PubMed ID: 15568807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic core around tyrosine for human endothelin-1 investigated by photochemically induced dynamic nuclear polarization nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Takashima H; Tamaoki H; Teno N; Nishi Y; Uchiyama S; Fukui K; Kobayashi Y
    Biochemistry; 2004 Nov; 43(44):13932-6. PubMed ID: 15518541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of a single amino acid changes the folding of an apamin hybrid sequence peptide to that of endothelin.
    Volkman BF; Wemmer DE
    Biopolymers; 1997 Apr; 41(4):451-60. PubMed ID: 9080780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo determination of protein structure by NMR using orientational and long-range order restraints.
    Hus JC; Marion D; Blackledge M
    J Mol Biol; 2000 May; 298(5):927-36. PubMed ID: 10801359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
    Bann JG; Frieden C
    Biochemistry; 2004 Nov; 43(43):13775-86. PubMed ID: 15504040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of disulfide bonds for the structure and folding of proguanylin.
    Lauber T; Schulz A; Rösch P; Marx UC
    Biochemistry; 2004 Aug; 43(31):10050-7. PubMed ID: 15287732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Searching for folding initiation sites of staphylococcal nuclease: a study of N-terminal short fragments.
    Dai J; Wang X; Feng Y; Fan G; Wang J
    Biopolymers; 2004 Oct; 75(3):229-41. PubMed ID: 15378482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel beta-defensin structure: big defensin changes its N-terminal structure to associate with the target membrane.
    Kouno T; Mizuguchi M; Aizawa T; Shinoda H; Demura M; Kawabata S; Kawano K
    Biochemistry; 2009 Aug; 48(32):7629-35. PubMed ID: 19588912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Asn(2) and Glu(7) residues in the oxidative folding and on the conformation of the N-terminal loop of apamin.
    Le-Nguyen D; Chiche L; Hoh F; Martin-Eauclaire MF; Dumas C; Nishi Y; Kobayashi Y; Aumelas A
    Biopolymers; 2007 Aug 5-15; 86(5-6):447-62. PubMed ID: 17486576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo design of a stable N-terminal helical foldamer.
    Nicoll AJ; Weston CJ; Cureton C; Ludwig C; Dancea F; Spencer N; Smart OS; Günther UL; Allemann RK
    Org Biomol Chem; 2005 Dec; 3(24):4310-5. PubMed ID: 16327890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of NMR structures using implicit solvent and advanced sampling techniques.
    Chen J; Im W; Brooks CL
    J Am Chem Soc; 2004 Dec; 126(49):16038-47. PubMed ID: 15584737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow conformational dynamics in the hamster prion protein.
    Kuwata K; Kamatari YO; Akasaka K; James TL
    Biochemistry; 2004 Apr; 43(15):4439-46. PubMed ID: 15078089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a bivalent peptide with two independent elements of secondary structure able to fold autonomously.
    Pantoja-Uceda D; Pastor MT; Salgado J; Pineda-Lucena A; Pérez-Payá E
    J Pept Sci; 2008 Jul; 14(7):845-54. PubMed ID: 18247449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlated dynamics of consecutive residues reveal transient and cooperative unfolding of secondary structure in proteins.
    Lundström P; Mulder FA; Akke M
    Proc Natl Acad Sci U S A; 2005 Nov; 102(47):16984-9. PubMed ID: 16278300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of thermolysin cleaved microcin J25: extreme stability of a two-chain antimicrobial peptide devoid of covalent links.
    Rosengren KJ; Blond A; Afonso C; Tabet JC; Rebuffat S; Craik DJ
    Biochemistry; 2004 Apr; 43(16):4696-702. PubMed ID: 15096038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional correlated accordion NMR spectroscopy of proteins.
    Ding K; Ithychanda S; Qin J
    J Magn Reson; 2006 Jun; 180(2):203-9. PubMed ID: 16530439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors.
    Lerch M; Mayrhofer M; Zerbe O
    J Mol Biol; 2004 Jun; 339(5):1153-68. PubMed ID: 15178255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination.
    Shen Y; Atreya HS; Liu G; Szyperski T
    J Am Chem Soc; 2005 Jun; 127(25):9085-99. PubMed ID: 15969587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.