These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15070358)
1. Charge development in the transition state for decarboxylations in water: spontaneous and acetone-catalyzed decarboxylation of aminomalonate. Callahan BP; Wolfenden R J Am Chem Soc; 2004 Apr; 126(14):4514-5. PubMed ID: 15070358 [TBL] [Abstract][Full Text] [Related]
2. Reaction kinetics and critical phenomena: iodination of acetone in isobutyric acid + water near the consolute point. Hu B; Baird JK J Phys Chem A; 2010 Jan; 114(1):355-9. PubMed ID: 19928887 [TBL] [Abstract][Full Text] [Related]
3. The effective molarity of the substrate phosphoryl group in the transition state for yeast OMP decarboxylase. Sievers A; Wolfenden R Bioorg Chem; 2005 Feb; 33(1):45-52. PubMed ID: 15668182 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamic study of orotidine-5'-monophosphate decarboxylase in ground state and in intermediate state: a role of the 203-218 loop dynamics. Hur S; Bruice TC Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9668-73. PubMed ID: 12107279 [TBL] [Abstract][Full Text] [Related]
5. A reexamination of the substrate utilization of 2-thioorotidine-5'-monophosphate by yeast orotidine-5'-monophosphate decarboxylase. Smiley JA; Hay KM; Levison BS Bioorg Chem; 2001 Apr; 29(2):96-106. PubMed ID: 11300698 [TBL] [Abstract][Full Text] [Related]
6. Accelerating unimolecular decarboxylation by preassociated acid catalysis in thiamin-derived intermediates: implicating Brønsted acids as carbanion traps in enzymes. Kluger R; Ikeda G; Hu Q; Cao P; Drewry J J Am Chem Soc; 2006 Dec; 128(49):15856-64. PubMed ID: 17147398 [TBL] [Abstract][Full Text] [Related]
7. Structural basis for the decarboxylation of orotidine 5'-monophosphate (OMP) by Plasmodium falciparum OMP decarboxylase. Tokuoka K; Kusakari Y; Krungkrai SR; Matsumura H; Kai Y; Krungkrai J; Horii T; Inoue T J Biochem; 2008 Jan; 143(1):69-78. PubMed ID: 17981823 [TBL] [Abstract][Full Text] [Related]
8. Structural and kinetic studies on native intermediates and an intermediate analogue in benzoylformate decarboxylase reveal a least motion mechanism with an unprecedented short-lived predecarboxylation intermediate. Bruning M; Berheide M; Meyer D; Golbik R; Bartunik H; Liese A; Tittmann K Biochemistry; 2009 Apr; 48(15):3258-68. PubMed ID: 19182954 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved FT EPR and optical spectroscopy study on photooxidation of aliphatic alpha-amino acids in aqueous solutions; electron transfer from amino vs carboxylate functional group. Tarabek P; Bonifacić M; Beckert D J Phys Chem A; 2006 Jun; 110(22):7293-302. PubMed ID: 16737283 [TBL] [Abstract][Full Text] [Related]
10. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics. Poduch E; Bello AM; Tang S; Fujihashi M; Pai EF; Kotra LP J Med Chem; 2006 Aug; 49(16):4937-45. PubMed ID: 16884305 [TBL] [Abstract][Full Text] [Related]
11. A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. Raugei S; Cascella M; Carloni P J Am Chem Soc; 2004 Dec; 126(48):15730-7. PubMed ID: 15571395 [TBL] [Abstract][Full Text] [Related]
12. Carbon isotope effect study on orotidine 5'-monophosphate decarboxylase: support for an anionic intermediate. Van Vleet JL; Reinhardt LA; Miller BG; Sievers A; Cleland WW Biochemistry; 2008 Jan; 47(2):798-803. PubMed ID: 18081312 [TBL] [Abstract][Full Text] [Related]
13. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase. Yew WS; Wise EL; Rayment I; Gerlt JA Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of acid decomposition of dithiocarbamates. 5. Piperidyl dithiocarbamate and analogues. Humeres E; Sun Lee B; Debacher NA J Org Chem; 2008 Sep; 73(18):7189-96. PubMed ID: 18722406 [TBL] [Abstract][Full Text] [Related]
15. Palladium-catalyzed cyclocarbonylation-decarboxylation of diethyl(2-iodoaryl)malonates with vinyl ketones affording functionalized enolic 2-acyl-3,4-dihydronaphthalenones. Zheng Z; Alper H Org Lett; 2009 Aug; 11(15):3278-81. PubMed ID: 19583215 [TBL] [Abstract][Full Text] [Related]
16. Kinetic and equilibrium study on formic acid decomposition in relation to the water-gas-shift reaction. Yasaka Y; Yoshida K; Wakai C; Matubayasi N; Nakahara M J Phys Chem A; 2006 Sep; 110(38):11082-90. PubMed ID: 16986841 [TBL] [Abstract][Full Text] [Related]
17. Generation of regiospecific carbanions under electrospray ionisation conditions and their selectivity in ion-molecule reactions with CO2. Kumar MK; Sateesh B; Prabhakar S; Sastry GN; Vairamani M Rapid Commun Mass Spectrom; 2006; 20(6):987-93. PubMed ID: 16479549 [TBL] [Abstract][Full Text] [Related]
18. Uroporphyrinogen decarboxylation as a benchmark for the catalytic proficiency of enzymes. Lewis CA; Wolfenden R Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17328-33. PubMed ID: 18988736 [TBL] [Abstract][Full Text] [Related]