BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 15070749)

  • 1. Evolutionary stability of DNA uptake signal sequences in the Pasteurellaceae.
    Bakkali M; Chen TY; Lee HC; Redfield RJ
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4513-8. PubMed ID: 15070749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of competence and DNA uptake specificity in the Pasteurellaceae.
    Redfield RJ; Findlay WA; Bossé J; Kroll JS; Cameron AD; Nash JH
    BMC Evol Biol; 2006 Oct; 6():82. PubMed ID: 17038178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequent oligonucleotides and peptides of the Haemophilus influenzae genome.
    Karlin S; Mrázek J; Campbell AM
    Nucleic Acids Res; 1996 Nov; 24(21):4263-72. PubMed ID: 8932382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA uptake signal sequences in naturally transformable bacteria.
    Smith HO; Gwinn ML; Salzberg SL
    Res Microbiol; 1999; 150(9-10):603-16. PubMed ID: 10673000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of the neisserial DNA uptake sequences on genome evolution and stability.
    Treangen TJ; Ambur OH; Tonjum T; Rocha EP
    Genome Biol; 2008; 9(3):R60. PubMed ID: 18366792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of genera of Pasteurellaceae using conserved predicted protein sequences.
    Christensen H; Bisgaard M
    Int J Syst Evol Microbiol; 2018 Aug; 68(8):2692-2696. PubMed ID: 29923825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of DNA uptake signal sequences.
    Chu D; Lee HC; Lenaerts T
    Artif Life; 2005; 11(3):317-38. PubMed ID: 16053573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae.
    De Ley J; Mannheim W; Mutters R; Piechulla K; Tytgat R; Segers P; Bisgaard M; Frederiksen W; Hinz KH; Vanhoucke M
    Int J Syst Bacteriol; 1990 Apr; 40(2):126-37. PubMed ID: 2223605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences.
    Dewhirst FE; Paster BJ; Olsen I; Fraser GJ
    J Bacteriol; 1992 Mar; 174(6):2002-13. PubMed ID: 1548238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic distribution and functions of uptake signal sequences in Actinobacillus actinomycetemcomitans.
    Wang Y; Orvis J; Dyer D; Chen C
    Microbiology (Reading); 2006 Nov; 152(Pt 11):3319-3325. PubMed ID: 17074902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Actinobacillus pleuropneumoniae and related organisms by DNA-DNA hybridization and restriction endonuclease fingerprinting.
    Borr JD; Ryan DA; MacInnes JI
    Int J Syst Bacteriol; 1991 Jan; 41(1):121-9. PubMed ID: 1847295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative phylogenies of the housekeeping genes atpD, infB and rpoB and the 16S rRNA gene within the Pasteurellaceae.
    Christensen H; Kuhnert P; Olsen JE; Bisgaard M
    Int J Syst Evol Microbiol; 2004 Sep; 54(Pt 5):1601-1609. PubMed ID: 15388716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural transformation and DNA uptake signal sequences in Actinobacillus actinomycetemcomitans.
    Wang Y; Goodman SD; Redfield RJ; Chen C
    J Bacteriol; 2002 Jul; 184(13):3442-9. PubMed ID: 12057937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial DNA uptake sequences can accumulate by molecular drive alone.
    Maughan H; Wilson LA; Redfield RJ
    Genetics; 2010 Oct; 186(2):613-27. PubMed ID: 20628039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular signatures (conserved indels) in protein sequences that are specific for the order Pasteurellales and distinguish two of its main clades.
    Naushad HS; Gupta RS
    Antonie Van Leeuwenhoek; 2012 Jan; 101(1):105-24. PubMed ID: 21830122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogeny of the Pasteurellaceae as determined by comparison of 16S ribosomal ribonucleic acid sequences.
    Dewhirst FE; Paster BJ; Olsen I; Fraser GJ
    Zentralbl Bakteriol; 1993 Jun; 279(1):35-44. PubMed ID: 7690271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome dynamics of short oligonucleotides: the example of bacterial DNA uptake enhancing sequences.
    Bakkali M
    PLoS One; 2007 Aug; 2(8):e741. PubMed ID: 17710141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining the DNA uptake specificity of naturally competent Haemophilus influenzae cells.
    Mell JC; Hall IM; Redfield RJ
    Nucleic Acids Res; 2012 Sep; 40(17):8536-49. PubMed ID: 22753031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide analysis of DNA uptake across the outer membrane of naturally competent
    Mora M; Mell JC; Ehrlich GD; Ehrlich RL; Redfield RJ
    iScience; 2021 Jan; 24(1):102007. PubMed ID: 33490915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intragenic distribution bias of DNA uptake sequences in Pasteurellaceae and Neisseriae.
    van Passel MW
    Biol Direct; 2008 Mar; 3():12. PubMed ID: 18371225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.