These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 15070765)
1. Mycobacterial polyketide-associated proteins are acyltransferases: proof of principle with Mycobacterium tuberculosis PapA5. Onwueme KC; Ferreras JA; Buglino J; Lima CD; Quadri LE Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4608-13. PubMed ID: 15070765 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of PapA5, a phthiocerol dimycocerosyl transferase from Mycobacterium tuberculosis. Buglino J; Onwueme KC; Ferreras JA; Quadri LE; Lima CD J Biol Chem; 2004 Jul; 279(29):30634-42. PubMed ID: 15123643 [TBL] [Abstract][Full Text] [Related]
3. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. Gupta M; Sajid A; Arora G; Tandon V; Singh Y J Biol Chem; 2009 Dec; 284(50):34723-34. PubMed ID: 19826007 [TBL] [Abstract][Full Text] [Related]
4. Two polyketide-synthase-associated acyltransferases are required for sulfolipid biosynthesis in Mycobacterium tuberculosis. Bhatt K; Gurcha SS; Bhatt A; Besra GS; Jacobs WR Microbiology (Reading); 2007 Feb; 153(Pt 2):513-520. PubMed ID: 17259623 [TBL] [Abstract][Full Text] [Related]
5. The mycobacterial acyltransferase PapA5 is required for biosynthesis of cell wall-associated phenolic glycolipids. Chavadi SS; Onwueme KC; Edupuganti UR; Jerome J; Chatterjee D; Soll CE; Quadri LEN Microbiology (Reading); 2012 May; 158(Pt 5):1379-1387. PubMed ID: 22361940 [TBL] [Abstract][Full Text] [Related]
6. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Trivedi OA; Arora P; Vats A; Ansari MZ; Tickoo R; Sridharan V; Mohanty D; Gokhale RS Mol Cell; 2005 Mar; 17(5):631-43. PubMed ID: 15749014 [TBL] [Abstract][Full Text] [Related]
7. Diacyltransferase Activity and Chain Length Specificity of Mycobacterium tuberculosis PapA5 in the Synthesis of Alkyl β-Diol Lipids. Touchette MH; Bommineni GR; Delle Bovi RJ; Gadbery JE; Nicora CD; Shukla AK; Kyle JE; Metz TO; Martin DW; Sampson NS; Miller WT; Tonge PJ; Seeliger JC Biochemistry; 2015 Sep; 54(35):5457-68. PubMed ID: 26271001 [TBL] [Abstract][Full Text] [Related]
8. A homologue of the Mycobacterium tuberculosis PapA5 protein, rif-orf20, is an acetyltransferase involved in the biosynthesis of antitubercular drug rifamycin B by Amycolatopsis mediterranei S699. Xiong Y; Wu X; Mahmud T Chembiochem; 2005 May; 6(5):834-7. PubMed ID: 15791687 [No Abstract] [Full Text] [Related]
9. F420H2 Is Required for Phthiocerol Dimycocerosate Synthesis in Mycobacteria. Purwantini E; Daniels L; Mukhopadhyay B J Bacteriol; 2016 Aug; 198(15):2020-8. PubMed ID: 27185825 [TBL] [Abstract][Full Text] [Related]
10. Modification of PapA5 acyltransferase substrate selectivity for optimization of short-chain alcohol-derived multimethyl-branched ester production in Escherichia coli. Roulet J; Galván V; Lara J; Salazar MO; Cholich V; Gramajo H; Arabolaza A Appl Microbiol Biotechnol; 2020 Oct; 104(20):8705-8718. PubMed ID: 32910267 [TBL] [Abstract][Full Text] [Related]
11. Inactivation of polyketide synthase and related genes results in the loss of complex lipids in Mycobacterium tuberculosis H37Rv. Waddell SJ; Chung GA; Gibson KJ; Everett MJ; Minnikin DE; Besra GS; Butcher PD Lett Appl Microbiol; 2005; 40(3):201-6. PubMed ID: 15715645 [TBL] [Abstract][Full Text] [Related]
12. Modification of rifamycin polyketide backbone leads to improved drug activity against rifampicin-resistant Mycobacterium tuberculosis. Nigam A; Almabruk KH; Saxena A; Yang J; Mukherjee U; Kaur H; Kohli P; Kumari R; Singh P; Zakharov LN; Singh Y; Mahmud T; Lal R J Biol Chem; 2014 Jul; 289(30):21142-52. PubMed ID: 24923585 [TBL] [Abstract][Full Text] [Related]
13. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. Kremer L; Nampoothiri KM; Lesjean S; Dover LG; Graham S; Betts J; Brennan PJ; Minnikin DE; Locht C; Besra GS J Biol Chem; 2001 Jul; 276(30):27967-74. PubMed ID: 11373295 [TBL] [Abstract][Full Text] [Related]
14. Characterization of phthiocerol and phthiodiolone dimycocerosate esters of M. tuberculosis by multiple-stage linear ion-trap MS. Flentie KN; Stallings CL; Turk J; Minnaard AJ; Hsu FF J Lipid Res; 2016 Jan; 57(1):142-55. PubMed ID: 26574042 [TBL] [Abstract][Full Text] [Related]
15. Interaction studies on proteins encoded by the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Rao A; Ranganathan A Mol Genet Genomics; 2004 Dec; 272(5):571-9. PubMed ID: 15668773 [TBL] [Abstract][Full Text] [Related]
17. Cryo-electron microscopy structure of the di-domain core of Johnston HE; Batt SM; Brown AK; Savva CG; Besra GS; Fütterer K Microbiology (Reading); 2024 Oct; 170(10):. PubMed ID: 39412527 [TBL] [Abstract][Full Text] [Related]
18. Rational engineering acyltransferase domain of modular polyketide synthase for expanding substrate specificity. Zhang W; Zhou L; Li C; Deng Z; Qu X Methods Enzymol; 2019; 622():271-292. PubMed ID: 31155056 [TBL] [Abstract][Full Text] [Related]
19. Insights into modular polyketide synthase loops aided by repetitive sequences. Hirsch M; Kumru K; Desai RR; Fitzgerald BJ; Miyazawa T; Ray KA; Saif N; Spears S; Keatinge-Clay AT Proteins; 2021 Sep; 89(9):1099-1110. PubMed ID: 33843112 [TBL] [Abstract][Full Text] [Related]
20. Transposon mutagenesis of Mb0100 at the ppe1-nrp locus in Mycobacterium bovis disrupts phthiocerol dimycocerosate (PDIM) and glycosylphenol-PDIM biosynthesis, producing an avirulent strain with vaccine properties at least equal to those of M. bovis BCG. Hotter GS; Wards BJ; Mouat P; Besra GS; Gomes J; Singh M; Bassett S; Kawakami P; Wheeler PR; de Lisle GW; Collins DM J Bacteriol; 2005 Apr; 187(7):2267-77. PubMed ID: 15774869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]