These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 15071119)

  • 21. Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice.
    Baker H; Cummings DM; Munger SD; Margolis JW; Franzen L; Reed RR; Margolis FL
    J Neurosci; 1999 Nov; 19(21):9313-21. PubMed ID: 10531436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential regulation by cyclic nucleotides of the CNGA4 and CNGB1b subunits in olfactory cyclic nucleotide-gated channels.
    Nache V; Zimmer T; Wongsamitkul N; Schmauder R; Kusch J; Reinhardt L; Bönigk W; Seifert R; Biskup C; Schwede F; Benndorf K
    Sci Signal; 2012 Jul; 5(232):ra48. PubMed ID: 22786723
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5.
    López F; Delgado R; López R; Bacigalupo J; Restrepo D
    J Neurosci; 2014 Feb; 34(9):3268-78. PubMed ID: 24573286
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation.
    Song Y; Cygnar KD; Sagdullaev B; Valley M; Hirsh S; Stephan A; Reisert J; Zhao H
    Neuron; 2008 May; 58(3):374-86. PubMed ID: 18466748
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensory transduction in vomeronasal neurons: evidence for G alpha o, G alpha i2, and adenylyl cyclase II as major components of a pheromone signaling cascade.
    Berghard A; Buck LB
    J Neurosci; 1996 Feb; 16(3):909-18. PubMed ID: 8558259
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased dopamine after mating impairs olfaction and prevents odor interference with pregnancy.
    Serguera C; Triaca V; Kelly-Barrett J; Banchaabouchi MA; Minichiello L
    Nat Neurosci; 2008 Aug; 11(8):949-56. PubMed ID: 18641644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Altered odor-induced expression of c-fos and arg 3.1 immediate early genes in the olfactory system after familiarization with an odor.
    Montag-Sallaz M; Buonviso N
    J Neurobiol; 2002 Jul; 52(1):61-72. PubMed ID: 12115894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping.
    Michalakis S; Reisert J; Geiger H; Wetzel C; Zong X; Bradley J; Spehr M; Hüttl S; Gerstner A; Pfeifer A; Hatt H; Yau KW; Biel M
    J Biol Chem; 2006 Nov; 281(46):35156-66. PubMed ID: 16980309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cat odor, but not trimethylthiazoline (fox odor), activates accessory olfactory and defense-related brain regions in rats.
    Staples LG; McGregor IS; Apfelbach R; Hunt GE
    Neuroscience; 2008 Feb; 151(4):937-47. PubMed ID: 18201833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. History-Dependent Odor Processing in the Mouse Olfactory Bulb.
    Vinograd A; Livneh Y; Mizrahi A
    J Neurosci; 2017 Dec; 37(49):12018-12030. PubMed ID: 29109236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals.
    Lin W; Margolskee R; Donnert G; Hell SW; Restrepo D
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2471-6. PubMed ID: 17267604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium.
    Trinh K; Storm DR
    Nat Neurosci; 2003 May; 6(5):519-25. PubMed ID: 12665798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adrenergic modulation of olfactory bulb circuitry affects odor discrimination.
    Doucette W; Milder J; Restrepo D
    Learn Mem; 2007 Aug; 14(8):539-47. PubMed ID: 17686948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Blocking adenylyl cyclase inhibits olfactory generator currents induced by "IP(3)-odors".
    Chen S; Lane AP; Bock R; Leinders-Zufall T; Zufall F
    J Neurophysiol; 2000 Jul; 84(1):575-80. PubMed ID: 10899229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic-nucleotide-gated cation current and Ca2+-activated Cl current elicited by odorant in vertebrate olfactory receptor neurons.
    Li RC; Ben-Chaim Y; Yau KW; Lin CC
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11078-11087. PubMed ID: 27647918
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deciphering the function of the CNGB1b subunit in olfactory CNG channels.
    Nache V; Wongsamitkul N; Kusch J; Zimmer T; Schwede F; Benndorf K
    Sci Rep; 2016 Jul; 6():29378. PubMed ID: 27405959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From odor and pheromone transduction to the organization of the sense of smell.
    Zufall F; Munger SD
    Trends Neurosci; 2001 Apr; 24(4):191-3. PubMed ID: 11249988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Odorant inhibition of the olfactory cyclic nucleotide-gated channel with a native molecular assembly.
    Chen TY; Takeuchi H; Kurahashi T
    J Gen Physiol; 2006 Sep; 128(3):365-71. PubMed ID: 16940558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clustering of cyclic-nucleotide-gated channels in olfactory cilia.
    Flannery RJ; French DA; Kleene SJ
    Biophys J; 2006 Jul; 91(1):179-88. PubMed ID: 16603488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream.
    Gliem S; Syed AS; Sansone A; Kludt E; Tantalaki E; Hassenklöver T; Korsching SI; Manzini I
    Cell Mol Life Sci; 2013 Jun; 70(11):1965-84. PubMed ID: 23269434
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.