These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15071455)

  • 1. Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts.
    Chue WL; Campbell GR; Caplice N; Muhammed A; Berry CL; Thomas AC; Bennett MB; Campbell JH
    J Vasc Surg; 2004 Apr; 39(4):859-67. PubMed ID: 15071455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-engineered blood vessel graft produced by self-derived cells and allogenic acellular matrix: a functional performance and histologic study.
    Yang D; Guo T; Nie C; Morris SF
    Ann Plast Surg; 2009 Mar; 62(3):297-303. PubMed ID: 19240529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioengineered vascular graft grown in the mouse peritoneal cavity.
    Song L; Wang L; Shah PK; Chaux A; Sharifi BG
    J Vasc Surg; 2010 Oct; 52(4):994-1002, 1002.e1-2. PubMed ID: 20692791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ureteral reconstruction using autologous tubular grafts for the management of ureteral strictures and defects: an experimental study.
    Zhang J; Gu GL; Liu GH; Jiang JT; Xia SJ; Sun J; Zhu YJ; Zhu J
    Urol Int; 2012; 88(1):60-5. PubMed ID: 22222954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular smooth muscle enhances functionality of tissue-engineered blood vessels in vivo.
    Neff LP; Tillman BW; Yazdani SK; Machingal MA; Yoo JJ; Soker S; Bernish BW; Geary RL; Christ GJ
    J Vasc Surg; 2011 Feb; 53(2):426-34. PubMed ID: 20934837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of environmental cues on the differentiation of myofibroblasts in peritoneal granulation tissue.
    Efendy JL; Campbell GR; Campbell JH
    J Pathol; 2000 Oct; 192(2):257-62. PubMed ID: 11004704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells: optimization of cell harvest and seeding techniques.
    Roh JD; Brennan MP; Lopez-Soler RI; Fong PM; Goyal A; Dardik A; Breuer CK
    J Pediatr Surg; 2007 Jan; 42(1):198-202. PubMed ID: 17208565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The peritoneal cavity as a bioreactor for tissue engineering visceral organs: bladder, uterus and vas deferens.
    Campbell GR; Turnbull G; Xiang L; Haines M; Armstrong S; Rolfe BE; Campbell JH
    J Tissue Eng Regen Med; 2008 Jan; 2(1):50-60. PubMed ID: 18361481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peritoneal cavity as bioreactor to grow autologous tubular urethral grafts in a rabbit model.
    Gu GL; Zhu YJ; Xia SJ; Zhang J; Jiang JT; Hong Y; Liu GH
    World J Urol; 2010 Apr; 28(2):227-32. PubMed ID: 19588153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel synthetic selectively degradable vascular prostheses: a preliminary implantation study.
    Izhar U; Schwalb H; Borman JB; Hellener GR; Hotoveli-Salomon A; Marom G; Stern T; Cohn D
    J Surg Res; 2001 Feb; 95(2):152-60. PubMed ID: 11162039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a composite degradable/nondegradable tissue-engineered vascular graft.
    Tschoeke B; Flanagan TC; Cornelissen A; Koch S; Roehl A; Sriharwoko M; Sachweh JS; Gries T; Schmitz-Rode T; Jockenhoevel S
    Artif Organs; 2008 Oct; 32(10):800-9. PubMed ID: 18684200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preliminary experience with tissue engineering of a venous vascular patch by using bone marrow-derived cells and a hybrid biodegradable polymer scaffold.
    Cho SW; Jeon O; Lim JE; Gwak SJ; Kim SS; Choi CY; Kim DI; Kim BS
    J Vasc Surg; 2006 Dec; 44(6):1329-40. PubMed ID: 17145438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered arterial grafts: long-term results after implantation in a small animal model.
    Mirensky TL; Nelson GN; Brennan MP; Roh JD; Hibino N; Yi T; Shinoka T; Breuer CK
    J Pediatr Surg; 2009 Jun; 44(6):1127-32; discussion 1132-3. PubMed ID: 19524728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue engineering of autologous human heart valves using cryopreserved vascular umbilical cord cells.
    Sodian R; Lueders C; Kraemer L; Kuebler W; Shakibaei M; Reichart B; Daebritz S; Hetzer R
    Ann Thorac Surg; 2006 Jun; 81(6):2207-16. PubMed ID: 16731156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells.
    Schmidt D; Dijkman PE; Driessen-Mol A; Stenger R; Mariani C; Puolakka A; Rissanen M; Deichmann T; Odermatt B; Weber B; Emmert MY; Zund G; Baaijens FP; Hoerstrup SP
    J Am Coll Cardiol; 2010 Aug; 56(6):510-20. PubMed ID: 20670763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel vascular graft grown within recipient's own peritoneal cavity.
    Campbell JH; Efendy JL; Campbell GR
    Circ Res; 1999 Dec 3-17; 85(12):1173-8. PubMed ID: 10590244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [An experimental study of small-caliber tissue engineering vessels with acellular matrix].
    Ma H; Yang DP; Hao CG; Guo TF; Liu GF
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 Jul; 24(4):297-9. PubMed ID: 18950026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decellularized vein as a potential scaffold for vascular tissue engineering.
    Schaner PJ; Martin ND; Tulenko TN; Shapiro IM; Tarola NA; Leichter RF; Carabasi RA; Dimuzio PJ
    J Vasc Surg; 2004 Jul; 40(1):146-53. PubMed ID: 15218475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Readily available tissue-engineered vascular grafts.
    Dahl SL; Kypson AP; Lawson JH; Blum JL; Strader JT; Li Y; Manson RJ; Tente WE; DiBernardo L; Hensley MT; Carter R; Williams TP; Prichard HL; Dey MS; Begelman KG; Niklason LE
    Sci Transl Med; 2011 Feb; 3(68):68ra9. PubMed ID: 21289273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclically stretching developing tissue in vivo enhances mechanical strength and organization of vascular grafts.
    Stickler P; De Visscher G; Mesure L; Famaey N; Martin D; Campbell JH; Van Oosterwyck H; Meuris B; Flameng W
    Acta Biomater; 2010 Jul; 6(7):2448-56. PubMed ID: 20123137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.