These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1507229)

  • 1. Modeling of the structure of bacteriorhodopsin. A molecular dynamics study.
    Jähnig F; Edholm O
    J Mol Biol; 1992 Aug; 226(3):837-50. PubMed ID: 1507229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Packing of transmembrane helices in bacteriorhodopsin folding: structure and thermodynamics.
    Chen CC; Wei CC; Sun YC; Chen CM
    J Struct Biol; 2008 May; 162(2):237-47. PubMed ID: 18262435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study.
    Edholm O; Berger O; Jähnig F
    J Mol Biol; 1995 Jun; 250(1):94-111. PubMed ID: 7602600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seven-helix bundles: molecular modeling via restrained molecular dynamics.
    Sansom MS; Son HS; Sankararamakrishnan R; Kerr ID; Breed J
    Biophys J; 1995 Apr; 68(4):1295-310. PubMed ID: 7787019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: I. Comparison with bacteriorhodopsin.
    Du P; Alkorta I
    Protein Eng; 1994 Oct; 7(10):1221-9. PubMed ID: 7855137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics of individual alpha-helices of bacteriorhodopsin in dimyristol phosphatidylocholine. I. Structure and dynamics.
    Woolf TB
    Biophys J; 1997 Nov; 73(5):2376-92. PubMed ID: 9370432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated method for modeling seven-helix transmembrane receptors from experimental data.
    Herzyk P; Hubbard RE
    Biophys J; 1995 Dec; 69(6):2419-42. PubMed ID: 8599649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin.
    Urano R; Okamoto Y
    J Chem Phys; 2015 Dec; 143(23):235101. PubMed ID: 26696075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An energy-based approach to packing the 7-helix bundle of bacteriorhodopsin.
    Chou KC; Carlacci L; Maggiora GM; Parodi LA; Schulz MW
    Protein Sci; 1992 Jun; 1(6):810-27. PubMed ID: 1304922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors.
    Pardo L; Ballesteros JA; Osman R; Weinstein H
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4009-12. PubMed ID: 1315046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the positioning of the seven transmembrane alpha-helices of bacteriorhodopsin. A molecular simulation study.
    Tuffery P; Etchebest C; Popot JL; Lavery R
    J Mol Biol; 1994 Mar; 236(4):1105-22. PubMed ID: 8120890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stability of transmembrane helices: a molecular dynamics study on the isolated helices of bacteriorhodopsin.
    Iyer LK; Vishveshwara S
    Biopolymers; 1996 Mar; 38(3):401-21. PubMed ID: 8906975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assignment of segments of the bacteriorhodopsin sequence to positions in the structural map.
    Trewhella J; Anderson S; Fox R; Gogol E; Khan S; Engelman D; Zaccai G
    Biophys J; 1983 Jun; 42(3):233-41. PubMed ID: 6871370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of individual alpha-helices of bacteriorhodopsin in dimyristoylphosphatidylcholine. II. Interaction energy analysis.
    Woolf TB
    Biophys J; 1998 Jan; 74(1):115-31. PubMed ID: 9449316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of the loops of bacteriorhodopsin closely resembles the crystal structure.
    Katragadda M; Alderfer JL; Yeagle PL
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):1-6. PubMed ID: 10825424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of the unfolding of individual bacteriorhodopsin helices in sodium dodecyl sulfate micelles.
    Krishnamani V; Lanyi JK
    Biochemistry; 2012 Feb; 51(6):1061-9. PubMed ID: 22304411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of transmembrane helices of simple polytopic membrane proteins from sequence conservation patterns.
    Park Y; Helms V
    Proteins; 2006 Sep; 64(4):895-905. PubMed ID: 16807902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of helix-helix interactions of bacteriorhodopsin by replica-exchange simulations.
    Kokubo H; Okamoto Y
    Biophys J; 2009 Feb; 96(3):765-76. PubMed ID: 18835905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane.
    Müller DJ; Sass HJ; Müller SA; Büldt G; Engel A
    J Mol Biol; 1999 Feb; 285(5):1903-9. PubMed ID: 9925773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Knowledge-based design of a soluble bacteriorhodopsin.
    Gibas C; Subramaniam S
    Protein Eng; 1997 Oct; 10(10):1175-90. PubMed ID: 9488142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.