These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 15072952)
1. NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi. Olearczyk JJ; Stephenson AH; Lonigro AJ; Sprague RS Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H748-54. PubMed ID: 15072952 [TBL] [Abstract][Full Text] [Related]
3. Rabbit erythrocytes possess adenylyl cyclase type II that is activated by the heterotrimeric G proteins Gs and Gi. Sprague R; Bowles E; Stumpf M; Ricketts G; Freidman A; Hou WH; Stephenson A; Lonigro A Pharmacol Rep; 2005; 57 Suppl():222-8. PubMed ID: 16415502 [TBL] [Abstract][Full Text] [Related]
4. Heterotrimeric G protein Gi is involved in a signal transduction pathway for ATP release from erythrocytes. Olearczyk JJ; Stephenson AH; Lonigro AJ; Sprague RS Am J Physiol Heart Circ Physiol; 2004 Mar; 286(3):H940-5. PubMed ID: 14615280 [TBL] [Abstract][Full Text] [Related]
5. Diamide decreases deformability of rabbit erythrocytes and attenuates low oxygen tension-induced ATP release. Sridharan M; Sprague RS; Adderley SP; Bowles EA; Ellsworth ML; Stephenson AH Exp Biol Med (Maywood); 2010 Sep; 235(9):1142-8. PubMed ID: 20682601 [TBL] [Abstract][Full Text] [Related]
6. The role of G protein beta subunits in the release of ATP from human erythrocytes. Sprague RS; Bowles EA; Olearczyk JJ; Stephenson AH; Lonigro AJ J Physiol Pharmacol; 2002 Dec; 53(4 Pt 1):667-74. PubMed ID: 12512701 [TBL] [Abstract][Full Text] [Related]
7. Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Sprague RS; Ellsworth ML; Stephenson AH; Lonigro AJ Am J Physiol Cell Physiol; 2001 Oct; 281(4):C1158-64. PubMed ID: 11546651 [TBL] [Abstract][Full Text] [Related]
8. Receptor-mediated activation of the heterotrimeric G-protein Gs results in ATP release from erythrocytes. Olearczyk JJ; Stephenson AH; Lonigro AJ; Sprague RS Med Sci Monit; 2001; 7(4):669-74. PubMed ID: 11433193 [TBL] [Abstract][Full Text] [Related]
9. Expression of the heterotrimeric G protein Gi and ATP release are impaired in erythrocytes of humans with diabetes mellitus. Sprague R; Stephenson A; Bowles E; Stumpf M; Ricketts G; Lonigro A Adv Exp Med Biol; 2006; 588():207-16. PubMed ID: 17089891 [TBL] [Abstract][Full Text] [Related]
10. Insulin inhibits human erythrocyte cAMP accumulation and ATP release: role of phosphodiesterase 3 and phosphoinositide 3-kinase. Hanson MS; Stephenson AH; Bowles EA; Sprague RS Exp Biol Med (Maywood); 2010 Feb; 235(2):256-62. PubMed ID: 20404042 [TBL] [Abstract][Full Text] [Related]
11. Amyloid peptide inhibits ATP release from human erythrocytes. Misiti F; Orsini F; Clementi ME; Masala D; Tellone E; Galtieri A; Giardina B Biochem Cell Biol; 2008 Dec; 86(6):501-8. PubMed ID: 19088798 [TBL] [Abstract][Full Text] [Related]
12. Human immunodeficiency virus type 1 Tat protein decreases cyclic AMP synthesis in rat microglia cultures. Patrizio M; Colucci M; Levi G J Neurochem; 2001 Apr; 77(2):399-407. PubMed ID: 11299302 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide increases cyclic GMP levels, AMP-activated protein kinase (AMPK)alpha1-specific activity and glucose transport in human skeletal muscle. Deshmukh AS; Long YC; de Castro Barbosa T; Karlsson HK; Glund S; Zavadoski WJ; Gibbs EM; Koistinen HA; Wallberg-Henriksson H; Zierath JR Diabetologia; 2010 Jun; 53(6):1142-50. PubMed ID: 20349036 [TBL] [Abstract][Full Text] [Related]
14. Reduced expression of G(i) in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Sprague RS; Stephenson AH; Bowles EA; Stumpf MS; Lonigro AJ Diabetes; 2006 Dec; 55(12):3588-93. PubMed ID: 17130508 [TBL] [Abstract][Full Text] [Related]
15. Prostacyclin receptor-mediated ATP release from erythrocytes requires the voltage-dependent anion channel. Sridharan M; Bowles EA; Richards JP; Krantic M; Davis KL; Dietrich KA; Stephenson AH; Ellsworth ML; Sprague RS Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H553-9. PubMed ID: 22159995 [TBL] [Abstract][Full Text] [Related]
16. Nitric oxide attenuates alpha(2)-adrenergic receptors by ADP-ribosylation of G(i)alpha in ciliary epithelium. Moroi SE; Hao Y; Sitaramayya A Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):2056-62. PubMed ID: 11481272 [TBL] [Abstract][Full Text] [Related]
17. Simvastatin and GGTI-2133, a geranylgeranyl transferase inhibitor, increase erythrocyte deformability but reduce low O(2) tension-induced ATP release. Clapp KM; Ellsworth ML; Sprague RS; Stephenson AH Am J Physiol Heart Circ Physiol; 2013 Mar; 304(5):H660-6. PubMed ID: 23335799 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of the nitric oxide-induced blockade of collecting duct water permeability. Garcia NH; Stoos BA; Carretero OA; Garvin JL Hypertension; 1996 Mar; 27(3 Pt 2):679-83. PubMed ID: 8613224 [TBL] [Abstract][Full Text] [Related]
19. Cyclic GMP-independent relaxation of rat pulmonary artery by spermine NONOate, a diazeniumdiolate nitric oxide donor. Homer KL; Wanstall JC Br J Pharmacol; 2000 Oct; 131(4):673-82. PubMed ID: 11030715 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of ATP release from erythrocytes: a role for EPACs and PKC. Adderley SP; Sridharan M; Bowles EA; Stephenson AH; Sprague RS; Ellsworth ML Microcirculation; 2011 Feb; 18(2):128-35. PubMed ID: 21166931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]