BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 15073172)

  • 1. Trypanothione S-transferase activity in a trypanosomatid ribosomal elongation factor 1B.
    Vickers TJ; Fairlamb AH
    J Biol Chem; 2004 Jun; 279(26):27246-56. PubMed ID: 15073172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leishmania major elongation factor 1B complex has trypanothione S-transferase and peroxidase activity.
    Vickers TJ; Wyllie S; Fairlamb AH
    J Biol Chem; 2004 Nov; 279(47):49003-9. PubMed ID: 15322082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trypanothione biosynthesis in Leishmania major.
    Oza SL; Shaw MP; Wyllie S; Fairlamb AH
    Mol Biochem Parasitol; 2005 Jan; 139(1):107-16. PubMed ID: 15610825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of the two enzymes responsible for trypanothione biosynthesis in Crithidia fasciculata.
    Tetaud E; Manai F; Barrett MP; Nadeau K; Walsh CT; Fairlamb AH
    J Biol Chem; 1998 Jul; 273(31):19383-90. PubMed ID: 9677355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of the trypanothione reductase gene from Crithidia fasciculata and Trypanosoma brucei: comparison with other flavoprotein disulphide oxidoreductases with respect to substrate specificity and catalytic mechanism.
    Aboagye-Kwarteng T; Smith K; Fairlamb AH
    Mol Microbiol; 1992 Nov; 6(21):3089-99. PubMed ID: 1453951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ovothiol and trypanothione as antioxidants in trypanosomatids.
    Ariyanayagam MR; Fairlamb AH
    Mol Biochem Parasitol; 2001 Jul; 115(2):189-98. PubMed ID: 11420105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of N-benzyloxycarbonyl-L-cysteinylglycine 3-dimethylaminopropylamide disulfide: a cheap and convenient new assay for trypanothione reductase.
    el-Waer A; Douglas KT; Smith K; Fairlamb AH
    Anal Biochem; 1991 Oct; 198(1):212-6. PubMed ID: 1789428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs.
    Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH
    J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression and reconstitution of the trypanothione-dependent peroxidase system of Crithidia fasciculata.
    Tetaud E; Fairlamb AH
    Mol Biochem Parasitol; 1998 Oct; 96(1-2):111-23. PubMed ID: 9851611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convenient isolation and kinetic mechanism of glutathionylspermidine synthetase from Crithidia fasciculata.
    Koenig K; Menge U; Kiess M; Wray V; Flohé L
    J Biol Chem; 1997 May; 272(18):11908-15. PubMed ID: 9115252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active site of trypanothione reductase. A target for rational drug design.
    Hunter WN; Bailey S; Habash J; Harrop SJ; Helliwell JR; Aboagye-Kwarteng T; Smith K; Fairlamb AH
    J Mol Biol; 1992 Sep; 227(1):322-33. PubMed ID: 1522596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glutamyl binding site of trypanothione reductase from Crithidia fasciculata: enzyme kinetic properties of gamma-glutamyl-modified substrate analogues.
    el-Waer AF; Smith K; McKie JH; Benson T; Fairlamb AH; Douglas KT
    Biochim Biophys Acta; 1993 Nov; 1203(1):93-8. PubMed ID: 8105896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single enzyme catalyses formation of Trypanothione from glutathione and spermidine in Trypanosoma cruzi.
    Oza SL; Tetaud E; Ariyanayagam MR; Warnon SS; Fairlamb AH
    J Biol Chem; 2002 Sep; 277(39):35853-61. PubMed ID: 12121990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning and expression of trypanothione reductase from a New World Leishmania species.
    Castro-Pinto DB; Genestra M; Menezes GB; Waghabi M; Gonçalves A; De Nigris Del Cistia C; Sant'Anna CM; Leon LL; Mendonça-Lima L
    Arch Microbiol; 2008 Apr; 189(4):375-84. PubMed ID: 18060667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity of the flavoprotein trypanothione disulfide reductase from Crithidia fasciculata.
    Henderson GB; Fairlamb AH; Ulrich P; Cerami A
    Biochemistry; 1987 Jun; 26(11):3023-7. PubMed ID: 3607007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of trypanothione synthetase from Trypanosoma brucei.
    Oza SL; Ariyanayagam MR; Aitcheson N; Fairlamb AH
    Mol Biochem Parasitol; 2003 Sep; 131(1):25-33. PubMed ID: 12967709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution.
    Bailey S; Smith K; Fairlamb AH; Hunter WN
    Eur J Biochem; 1993 Apr; 213(1):67-75. PubMed ID: 8477734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Achilles' heel of trypanosomatids: trypanothione-mediated hydroperoxide metabolism.
    Flohé L
    Biofactors; 1998; 8(1-2):87-91. PubMed ID: 9699014
    [No Abstract]   [Full Text] [Related]  

  • 19. Simple methods for the detection and quantification of thiols from Crithidia fasciculata and for the isolation of trypanothione.
    Steenkamp DJ
    Biochem J; 1993 May; 292 ( Pt 1)(Pt 1):295-301. PubMed ID: 8503857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata.
    Oza SL; Ariyanayagam MR; Fairlamb AH
    Biochem J; 2002 Jun; 364(Pt 3):679-86. PubMed ID: 12049631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.