These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
421 related articles for article (PubMed ID: 15073221)
1. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth. Robert C; Bancal MO; Nicolas P; Lannou C; Ney B J Exp Bot; 2004 May; 55(399):1079-94. PubMed ID: 15073221 [TBL] [Abstract][Full Text] [Related]
2. Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status. Robert C; Bancal MO; Lannou C; Ney B J Exp Bot; 2006; 57(1):225-34. PubMed ID: 15837707 [TBL] [Abstract][Full Text] [Related]
3. Modelling wheat growth and yield losses from late epidemics of foliar diseases using loss of green leaf area per layer and pre-anthesis reserves. Bancal MO; Robert C; Ney B Ann Bot; 2007 Oct; 100(4):777-89. PubMed ID: 17686762 [TBL] [Abstract][Full Text] [Related]
4. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
5. Wheat reaction to leaf rust and Septoria tritici blotch in four fertilization conditions. Gonçalves MJ; Bagulho AS; Da Silva MJ; Carvalho MT Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1081-5. PubMed ID: 17390862 [No Abstract] [Full Text] [Related]
6. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Chenu K; Chapman SC; Hammer GL; McLean G; Salah HB; Tardieu F Plant Cell Environ; 2008 Mar; 31(3):378-91. PubMed ID: 18088328 [TBL] [Abstract][Full Text] [Related]
7. Wheat leaf photosynthesis loss due to leaf rust, with respect to lesion development and leaf nitrogen status. Robert C; Bancal MO; Ney B; Lannou C New Phytol; 2005 Jan; 165(1):227-41. PubMed ID: 15720636 [TBL] [Abstract][Full Text] [Related]
8. Inoculum sources of the tan spot fungus Pyrenophora tritici-repentis in The Netherlands. Kastelein P; Köhl J; Gerlagh M; Goossen-van de Geijn HM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):257-67. PubMed ID: 12701430 [TBL] [Abstract][Full Text] [Related]
9. Wheat Leaf Rust Uredospore Production on Adult Plants: Influence of Leaf Nitrogen Content and Septoria tritici Blotch. Robert C; Bancal MO; Lannou C Phytopathology; 2004 Jul; 94(7):712-21. PubMed ID: 18943903 [TBL] [Abstract][Full Text] [Related]
10. Plant architecture and foliar senescence impact the race between wheat growth and Zymoseptoria tritici epidemics. Robert C; Garin G; Abichou M; Houlès V; Pradal C; Fournier C Ann Bot; 2018 Apr; 121(5):975-989. PubMed ID: 29373663 [TBL] [Abstract][Full Text] [Related]
11. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores. Ferrandino FJ Phytopathology; 2008 May; 98(5):492-503. PubMed ID: 18943216 [TBL] [Abstract][Full Text] [Related]
12. A model of dynamics of leaves and nitrogen in a plant canopy: an integration of canopy photosynthesis, leaf life span, and nitrogen use efficiency. Hikosaka K Am Nat; 2003 Aug; 162(2):149-64. PubMed ID: 12858260 [TBL] [Abstract][Full Text] [Related]
13. Avirulence in the wheat septoria tritici leaf blotch fungus Mycosphaerella graminicola is controlled by a single locus. Kema GH; Verstappen EC; Waalwijk C Mol Plant Microbe Interact; 2000 Dec; 13(12):1375-9. PubMed ID: 11106030 [TBL] [Abstract][Full Text] [Related]
14. Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach. Garin G; Pradal C; Fournier C; Claessen D; Houlès V; Robert C Ann Bot; 2018 Apr; 121(5):927-940. PubMed ID: 29300857 [TBL] [Abstract][Full Text] [Related]
15. Late foliar diseases in wheat crops decrease nitrogen yield through N uptake rather than through variations in N remobilization. Bancal MO; Roche R; Bancal P Ann Bot; 2008 Oct; 102(4):579-90. PubMed ID: 18660494 [TBL] [Abstract][Full Text] [Related]
16. Local dispersal of Puccinia triticina and wheat canopy structure. Frezal L; Robert C; Bancal MO; Lannou C Phytopathology; 2009 Oct; 99(10):1216-24. PubMed ID: 19740036 [TBL] [Abstract][Full Text] [Related]
17. Genetics of durable resistance to leaf rust and stripe rust of an Indian wheat cultivar HD2009. Khanna R; Bansal UK; Saini RG J Appl Genet; 2005; 46(3):259-63. PubMed ID: 16110181 [TBL] [Abstract][Full Text] [Related]
18. Effects of ozone on growth, yield and leaf gas exchange rates of two Bangladeshi cultivars of wheat (Triticum aestivum L.). Akhtar N; Yamaguchi M; Inada H; Hoshino D; Kondo T; Izuta T Environ Pollut; 2010 May; 158(5):1763-7. PubMed ID: 19962222 [TBL] [Abstract][Full Text] [Related]
19. An approach to crop modeling with the energy cascade. Volk T; Bugbee B; Wheeler RM Life Support Biosph Sci; 1995; 1(3-4):119-27. PubMed ID: 11538584 [TBL] [Abstract][Full Text] [Related]
20. Genotypic and nutrition-dependent variation in water use efficiency and photosynthetic activity of leaves in winter wheat (Triticum aestivum L.). Górny AG; Garczyński S J Appl Genet; 2002; 43(2):145-60. PubMed ID: 12080171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]