These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 15073309)

  • 1. Regulation of catabolic enzymes during long-term exposure of Delftia acidovorans MC1 to chlorophenoxy herbicides.
    Benndorf D; Davidson I; Babel W
    Microbiology (Reading); 2004 Apr; 150(Pt 4):1005-1014. PubMed ID: 15073309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress.
    Benndorf D; Babel W
    Microbiology (Reading); 2002 Sep; 148(Pt 9):2883-2888. PubMed ID: 12213933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides.
    Müller RH; Kleinsteuber S; Babel W
    Microbiol Res; 2001; 156(2):121-31. PubMed ID: 11572451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delftia acidovorans MC1 resists high herbicide concentrations--a study of nutristat growth on (RS)-2-(2,4-Dichlorophenoxy)propionate and 2,4-dichlorophenoxyacetate.
    Müller RH; Babel W
    Biosci Biotechnol Biochem; 2004 Mar; 68(3):622-30. PubMed ID: 15056896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Declining capacity of starving Delftia acidovorans MC1 to degrade phenoxypropionate herbicides correlates with oxidative modification of the initial enzyme.
    Leibeling S; Schmidt F; Jehmlich N; von Bergen M; Müller RH; Harms H
    Environ Sci Technol; 2010 May; 44(10):3793-9. PubMed ID: 20397636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake kinetics of 2,4-dichlorophenoxyacetate by Delftia acidovorans MC1 and derivative strains: complex characteristics in response to pH and growth substrate.
    Müller RH; Hoffmann D
    Biosci Biotechnol Biochem; 2006 Jul; 70(7):1642-54. PubMed ID: 16861799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,4-Dichlorophenoxyacetic acid (2,4-D) utilization by Delftia acidovorans MC1 at alkaline pH and in the presence of dichlorprop is improved by introduction of the tfdK gene.
    Hoffmann D; Müller RH
    Biodegradation; 2006 Jun; 17(3):263-73. PubMed ID: 16715405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.
    Müller RH; Jorks S; Kleinsteuber S; Babel W
    Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1.
    Schleinitz KM; Kleinsteuber S; Vallaeys T; Babel W
    Appl Environ Microbiol; 2004 Sep; 70(9):5357-65. PubMed ID: 15345421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energization of Comamonas testosteroni ATCC 17454 for indicating toxic effects of chlorophenoxy herbicides.
    Loffhagen N; Härtig C; Babel W
    Arch Environ Contam Toxicol; 2003 Oct; 45(3):317-23. PubMed ID: 14674583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudomonas putida KT2440 responds specifically to chlorophenoxy herbicides and their initial metabolites.
    Benndorf D; Thiersch M; Loffhagen N; Kunath C; Harms H
    Proteomics; 2006 Jun; 6(11):3319-29. PubMed ID: 16637006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective stable isotope analysis (ESIA) of polar herbicides.
    Maier MP; Qiu S; Elsner M
    Anal Bioanal Chem; 2013 Mar; 405(9):2825-31. PubMed ID: 23377114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols.
    Liu S; Ogawa N; Miyashita K
    Gene; 2001 May; 268(1-2):207-14. PubMed ID: 11368916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the metabolism pathway of aniline degradation by Comamonas acidovorans AN3].
    Liu Z; Yang H; Zhou P
    Wei Sheng Wu Xue Bao; 1999 Oct; 39(5):448-53. PubMed ID: 12555527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44.
    Thiel M; Kaschabek SR; Gröning J; Mau M; Schlömann M
    Arch Microbiol; 2005 Feb; 183(2):80-94. PubMed ID: 15688254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of aryloxyalkanoate dioxygenase-12, a nonheme Fe(II)/α-ketoglutarate-dependent dioxygenase, expressed in transgenic soybean and Pseudomonas fluorescens.
    Griffin SL; Godbey JA; Oman TJ; Embrey SK; Karnoup A; Kuppannan K; Barnett BW; Lin G; Harpham NV; Juba AN; Schafer BW; Cicchillo RM
    J Agric Food Chem; 2013 Jul; 61(27):6589-96. PubMed ID: 23742120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134.
    Ledger T; Pieper DH; Pérez-Pantoja D; González B
    Microbiology (Reading); 2002 Nov; 148(Pt 11):3431-3440. PubMed ID: 12427935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T.
    Travkin VM; Jadan AP; Briganti F; Scozzafava A; Golovleva LA
    FEBS Lett; 1997 Apr; 407(1):69-72. PubMed ID: 9141483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary relationship between chlorocatechol catabolic enzymes from Rhodococcus opacus 1CP and their counterparts in proteobacteria: sequence divergence and functional convergence.
    Eulberg D; Kourbatova EM; Golovleva LA; Schlömann M
    J Bacteriol; 1998 Mar; 180(5):1082-94. PubMed ID: 9495745
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4).
    Laemmli CM; Leveau JH; Zehnder AJ; van der Meer JR
    J Bacteriol; 2000 Aug; 182(15):4165-72. PubMed ID: 10894723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.