These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 15073320)
1. Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis. Ramos A; Neves AR; Ventura R; Maycock C; López P; Santos H Microbiology (Reading); 2004 Apr; 150(Pt 4):1103-1111. PubMed ID: 15073320 [TBL] [Abstract][Full Text] [Related]
2. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475 [TBL] [Abstract][Full Text] [Related]
3. Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. Neves AR; Ramos A; Shearman C; Gasson MJ; Almeida JS; Santos H Eur J Biochem; 2000 Jun; 267(12):3859-68. PubMed ID: 10849005 [TBL] [Abstract][Full Text] [Related]
4. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR. Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086 [TBL] [Abstract][Full Text] [Related]
5. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: predominant role of the NADH/NAD+ ratio. Garrigues C; Loubiere P; Lindley ND; Cocaign-Bousquet M J Bacteriol; 1997 Sep; 179(17):5282-7. PubMed ID: 9286977 [TBL] [Abstract][Full Text] [Related]
6. Glucose metabolism and regulation of glycolysis in Lactococcus lactis strains with decreased lactate dehydrogenase activity. Garrigues C; Goupil-Feuillerat N; Cocaign-Bousquet M; Renault P; Lindley ND; Loubiere P Metab Eng; 2001 Jul; 3(3):211-7. PubMed ID: 11461143 [TBL] [Abstract][Full Text] [Related]
7. Time dependent responses of glycolytic intermediates in a detailed glycolytic model of Lactococcus lactis during glucose run-out experiments. Hoefnagel MH; van der Burgt A; Martens DE; Hugenholtz J; Snoep JL Mol Biol Rep; 2002; 29(1-2):157-61. PubMed ID: 12241048 [TBL] [Abstract][Full Text] [Related]
8. Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux. Andersen HW; Solem C; Hammer K; Jensen PR J Bacteriol; 2001 Jun; 183(11):3458-67. PubMed ID: 11344154 [TBL] [Abstract][Full Text] [Related]
9. Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Neves AR; Ramos A; Costa H; van Swam II; Hugenholtz J; Kleerebezem M; de Vos W; Santos H Appl Environ Microbiol; 2002 Dec; 68(12):6332-42. PubMed ID: 12450858 [TBL] [Abstract][Full Text] [Related]
10. In vivo nuclear magnetic resonance studies of glycolytic kinetics in Lactococcus lactis. Neves AR; Ramos A; Nunes MC; Kleerebezem M; Hugenholtz J; de Vos WM; Almeida J; Santos H Biotechnol Bioeng; 1999 Jul; 64(2):200-12. PubMed ID: 10397856 [TBL] [Abstract][Full Text] [Related]
11. Use of 31P nuclear magnetic resonance spectroscopy and 14C fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. Thompson J; Torchia DA J Bacteriol; 1984 Jun; 158(3):791-800. PubMed ID: 6427193 [TBL] [Abstract][Full Text] [Related]
12. New insights into the complex regulation of the glycolytic pathway in Lactococcus lactis. II. Inference of the precisely timed control system regulating glycolysis. Dolatshahi S; Fonseca LL; Voit EO Mol Biosyst; 2016 Jan; 12(1):37-47. PubMed ID: 26609780 [TBL] [Abstract][Full Text] [Related]
13. Control analysis as a tool to understand the formation of the las operon in Lactococcus lactis. Koebmann B; Solem C; Jensen PR FEBS J; 2005 May; 272(9):2292-303. PubMed ID: 15853813 [TBL] [Abstract][Full Text] [Related]
14. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
15. High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Bongers RS; Hoefnagel MH; Kleerebezem M Appl Environ Microbiol; 2005 Feb; 71(2):1109-13. PubMed ID: 15691976 [TBL] [Abstract][Full Text] [Related]
16. Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions. Zhao C; Lin Z; Dong H; Zhang Y; Li Y Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363967 [TBL] [Abstract][Full Text] [Related]
17. Catabolism of mannitol in Lactococcus lactis MG1363 and a mutant defective in lactate dehydrogenase. Neves AR; Ramos A; Shearman C; Gasson MJ; Santos H Microbiology (Reading); 2002 Nov; 148(Pt 11):3467-3476. PubMed ID: 12427938 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Luesink EJ; van Herpen RE; Grossiord BP; Kuipers OP; de Vos WM Mol Microbiol; 1998 Nov; 30(4):789-98. PubMed ID: 10094627 [TBL] [Abstract][Full Text] [Related]
19. Regulation of pyruvate metabolism in Lactococcus lactis depends on the imbalance between catabolism and anabolism. Garrigues C; Mercade M; Cocaign-Bousquet M; Lindley ND; Loubiere P Biotechnol Bioeng; 2001 Jul; 74(2):108-15. PubMed ID: 11369999 [TBL] [Abstract][Full Text] [Related]
20. The las enzymes control pyruvate metabolism in Lactococcus lactis during growth on maltose. Solem C; Koebmann B; Yang F; Jensen PR J Bacteriol; 2007 Sep; 189(18):6727-30. PubMed ID: 17616595 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]