BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 15073582)

  • 1. In vivo passage of albumin from the aqueous humor into the lens.
    Sabah JR; Davidson H; McConkey EN; Takemoto L
    Mol Vis; 2004 Apr; 10():254-9. PubMed ID: 15073582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcytotic passage of albumin through lens epithelial cells.
    Sabah JR; Schultz BD; Brown ZW; Nguyen AT; Reddan J; Takemoto LJ
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1237-44. PubMed ID: 17325168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of albumin as a fatty acid carrier for biosynthesis of lens lipids.
    Sabah J; McConkey E; Welti R; Albin K; Takemoto LJ
    Exp Eye Res; 2005 Jan; 80(1):31-6. PubMed ID: 15652523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinoic acid transport to lens epithelium in human aqueous humor.
    Wakabayashi Y; Kawahara J; Iwasaki T; Usui M
    Jpn J Ophthalmol; 1994; 38(4):400-6. PubMed ID: 7723209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling cortical cataractogenesis XXIV: uptake by the lens of glutathione injected into the rat.
    Stewart-DeHaan PJ; Dzialoszynski T; Trevithick JR
    Mol Vis; 1999 Dec; 5():37. PubMed ID: 10617774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Confocal laser scanning microscopy imaging of dynamic TMRE movement in the mitochondria of epithelial and superficial cortical fiber cells of bovine lenses.
    Bantseev V; Sivak JG
    Mol Vis; 2005 Jul; 11():518-23. PubMed ID: 16052167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood-to-lens transport of reduced glutathione in an in situ perfused guinea-pig eye.
    Zlokovic BV; Mackic JB; McComb JG; Kaplowitz N; Weiss MH; Kannan R
    Exp Eye Res; 1994 Oct; 59(4):487-96. PubMed ID: 7859824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium.
    Mackic JB; Kannan R; Kaplowitz N; Zlokovic BV
    Exp Eye Res; 1997 Apr; 64(4):615-26. PubMed ID: 9227280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatty acid cytotoxicity to human lens epithelial cells.
    Iwig M; Glaesser D; Fass U; Struck HG
    Exp Eye Res; 2004 Nov; 79(5):689-704. PubMed ID: 15500827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49.
    Lindsey Rose KM; Gourdie RG; Prescott AR; Quinlan RA; Crouch RK; Schey KL
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1562-70. PubMed ID: 16565393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endogenous nucleosides in the guinea-pig eye: analysis of transport and metabolites.
    Redzic ZB; Markovic ID; Vidovic VP; Vranic VP; Gasic JM; Duricic BM; Pokrajac M; Dordevic JB; Segal MB; Rakic LM
    Exp Eye Res; 1998 Mar; 66(3):315-25. PubMed ID: 9533859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles for KCC transporters in the maintenance of lens transparency.
    Chee KS; Kistler J; Donaldson PJ
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):673-82. PubMed ID: 16431967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells.
    Wang X; Garcia CM; Shui YB; Beebe DC
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3608-19. PubMed ID: 15452068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein kinase C-gamma activation in the early streptozotocin diabetic rat lens.
    Lin D; Harris R; Stutzman R; Zampighi GA; Davidson H; Takemoto DJ
    Curr Eye Res; 2007 Jun; 32(6):523-32. PubMed ID: 17612968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo entry of glucose analogs into lens and cornea of the rat.
    DiMattio J
    Invest Ophthalmol Vis Sci; 1984 Feb; 25(2):160-5. PubMed ID: 6698738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of free amino acids and related compounds in ocular fluids, lens, and plasma of various mammalian species.
    Reddy DV
    Invest Ophthalmol; 1967 Oct; 6(5):478-83. PubMed ID: 4964822
    [No Abstract]   [Full Text] [Related]  

  • 17. Proteolytic mechanisms underlying mitochondrial degradation in the ocular lens.
    Zandy AJ; Bassnett S
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):293-302. PubMed ID: 17197546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative junctional permeability measurements using the confocal microscope.
    Miller A
    Microsc Res Tech; 1995 Aug; 31(5):387-95. PubMed ID: 8534900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased gap junctional communication in neurobiotin microinjected lens epithelial cells after taxol treatment.
    Giessmann D; Theiss C; Breipohl W; Meller K
    Anat Embryol (Berl); 2005 Jun; 209(5):391-400. PubMed ID: 15864639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth factors involved in aqueous humour-induced lens cell proliferation.
    Iyengar L; Patkunanathan B; McAvoy JW; Lovicu FJ
    Growth Factors; 2009 Feb; 27(1):50-62. PubMed ID: 19085197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.