These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 15074703)

  • 1. Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms.
    Nghiem LD; Schäfer AI; Elimelech M
    Environ Sci Technol; 2004 Mar; 38(6):1888-96. PubMed ID: 15074703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of hormone-humic acid interactions in nanofiltration.
    Shen J; Jin Yang X; Schäfer AI
    Environ Sci Technol; 2012 Oct; 46(19):10597-604. PubMed ID: 22866902
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis.
    Schäfer AI; Nghiem LD; Waite TD
    Environ Sci Technol; 2003 Jan; 37(1):182-8. PubMed ID: 12542309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of solute-membrane affinity on rejection of uncharged organic solutes by nanofiltration membranes.
    Verliefde AR; Cornelissen ER; Heijman SG; Hoek EM; Amy GL; Van der Bruggen B; Van Dijkt JC
    Environ Sci Technol; 2009 Apr; 43(7):2400-6. PubMed ID: 19452893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Barriers for Steroid Hormone Transport in Nanofiltration.
    Allouzi M; Imbrogno A; Schäfer AI
    Environ Sci Technol; 2022 Dec; 56(23):16811-16821. PubMed ID: 36367435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents.
    Khansary MA; Mellat M; Saadat SH; Fasihi-Ramandi M; Kamali M; Taheri RA
    Chemosphere; 2017 Feb; 168():91-99. PubMed ID: 27776242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of endocrine disrupters in water recycling: risk or mania?
    Nghiem LD; McCutcheon J; Schäfer AI; Elimelech M
    Water Sci Technol; 2004; 50(2):215-20. PubMed ID: 15344794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of dissolved organic matter on estrone removal by NF membranes and the role of their structures.
    Jin X; Hu J; Ong SL
    Water Res; 2007 Jul; 41(14):3077-88. PubMed ID: 17548103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retention of pesticide Endosulfan by nanofiltration: influence of organic matter-pesticide complexation and solute-membrane interactions.
    De Munari A; Semiao AJ; Antizar-Ladislao B
    Water Res; 2013 Jun; 47(10):3484-96. PubMed ID: 23615337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of organic and colloidal fouling on the removal of sulphamethoxazole by nanofiltration membranes.
    Nghiem LD; Espendiller C; Braun G
    Water Sci Technol; 2008; 58(1):163-9. PubMed ID: 18653950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of the retention of uncharged molecules with nanofiltration.
    Van der Bruggen B; Vandecasteele C
    Water Res; 2002 Mar; 36(5):1360-8. PubMed ID: 11902791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanofiltration for the removal of algal metabolites and the effects of fouling.
    Dixon MB; Falconet C; Ho L; Chow CW; O'Neill BK; Newcombe G
    Water Sci Technol; 2010; 61(5):1189-99. PubMed ID: 20220241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of steroid micropollutants on polymer-based spherical activated carbon (PBSAC).
    Tagliavini M; Engel F; Weidler PG; Scherer T; Schäfer AI
    J Hazard Mater; 2017 Sep; 337():126-137. PubMed ID: 28549305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmaceutical retention mechanisms by nanofiltration membranes.
    Nghiem LD; Schäfer AI; Elimelech M
    Environ Sci Technol; 2005 Oct; 39(19):7698-705. PubMed ID: 16245847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rejection efficiency of water quality parameters by reverse osmosis and nanofiltration membranes.
    Peng W; Escobar IC
    Environ Sci Technol; 2003 Oct; 37(19):4435-41. PubMed ID: 14572097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fouling characteristics of NF and RO operated for removal of dissolved matter from groundwater.
    Gwon EM; Yu MJ; Oh HK; Ylee YH
    Water Res; 2003 Jul; 37(12):2989-97. PubMed ID: 12767302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-component competitive adsorption model for flow-through PAC systems. 2. Model application to a PAC/membrane system.
    Li Q; Mariñas BJ; Snoeyink VL; Campos C
    Environ Sci Technol; 2003 Jul; 37(13):3005-11. PubMed ID: 12875407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of the endocrine-active compound estrone on microfiltration hollow fiber membranes.
    Chang S; Waite TD; Schäfer AI; Fane AG
    Environ Sci Technol; 2003 Jul; 37(14):3158-63. PubMed ID: 12901665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Researches on factors affecting the removal of carbamazepine by nanofiltration membranes].
    Huang Y; Zhang H; Dong BZ
    Huan Jing Ke Xue; 2011 Mar; 32(3):705-10. PubMed ID: 21634167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of solubility on the rejection of trace organics by nanofiltration membrane: exemplified with disinfection by-products.
    Kong FX; Wang XM; Yang HW; Chen JF; Guo CM; Zhang T; Xie YF
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18400-18409. PubMed ID: 28643277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.